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From the Editor

Welcome to the January issue of SIGLOG News!
In this issue

—SIGLOG’s Chair unveils the new logo.

— We pay tribute to the late Robert McNaughton (1924-2014) with an obituary by John
Corcoran, Paliath Narendran and Wolfgang Thomas. The significance of McNaugh-
ton’s Theorem is further discussed in the Automata Column by Mikotaj Bojanczyk.

— Anuj Dawar surveys fixed-point logic with counting in Neil Immerman’s Complexity
column.

—In Matteo Maffei’s Security and Privacy column, Catélin Hritcu’s reports on the re-
cently organized “Joint EasyCrypt-F*-CryptoVerif School 2014” and Véronique Cor-
tier presents solutions and challenges in verifying e-voting protocols.

—Homotopy Type Theory takes centre stage in Mike Mislove’s Semantics column:
Steve Awodey and Robert Harper provide an account of the latest developments.

—Neha Rungta sets out her vision for the Verification column.
—We end with a survey on Theory in Practice for System Design and Verification by
Rajeev Alur, Thomas Henzinger and Moshe Vardi.

SIGLOG News is looking for volunteers for coordinating sections on conference reports
and book reviews. Please email editor@siglog.org if you are interested. Prakash will
be going to POPL this January and will kick off with a report on that.

Happy New Year!

Andrzej Murawski
University of Warwick
SIGLOG News Editor
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Chair’s Letter

The season of holidays and rushing to meet the major conference deadlines is upon us.
Best wishes to everyone on both counts.

SIGLOG has a new logo. Congratulations to Peter Selinger for his simple but elegant
design, so like Peter’s own outstanding research!

SIGLOG

The most important recent news is that ACM and EATCS and EACSL have appro-
ved reciprocity agreements for discounted memberships. This is monetarily a small
step but a major step in fostering the spirit of cooperation between SIGLOG and our
allied organizations. This summer, the ACM-IEEE Symposium on Logic in Computer
Science (LICS) and the International Colloquium on Automata, Languages and Pro-
gramming (ICALP) will take place in Kyoto, Japan. The last such co-located event was
2007 in Wroclaw. Coming on the heels of the highly successful FLoC last summer in
Vienna, this is another opportunity to strengthen ties with related communities.

Our membership is close to 200 which is good, but we aim to do better. I will start a
serious recruiting effort in the coming conference season.

Prakash Panangaden
McGill University
ACM SIGLOG Chair
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TRIBUTE

Robert McNaughton (1924-2014)

e
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The scientific community receives with sadness the news of the death of Robert
McNaughton, a pioneer of theoretical computer science who has shaped our field by
his ingenious contributions reported in a large number of lucid and highly influential
papers. Bob McNaughton grew up in Brooklyn in New York City. His undergradu-
ate degree is from Columbia University and his doctorate from Harvard, where his
advisor was Willard Van Orman Quine. Several of his fellow Quine students became
distinguished logicians: William Craig, Henry Hiz, Hughes Leblanc, John Myhill, and
Hao Wang. Starting from his dissertation On Establishing the Consistency of Systems
(1951), McNaughton’s early work - often in collaboration with Wang - was devoted to
set theory and problems of relative consistency. At the same time he made fundamen-
tal contributions to philosophy of mathematics (in Philosophical Review) and to the
metamathematics of number theory (in Transactions of the American Mathematical
Society).

In the late 1950’s and early 1960’s, at the Moore School of Electrical Engineering of
the University of Pennsylvania, he turned to the theory of finite automata and regular
languages. An influential paper with his Penn PhD student Hisao Yamada supplied a
lucid treatment of finite automata in relation to regular expressions. In the 1960’s, he
moved to Rensselaer Polytechnic Institute, where he stayed until his retirement.

In the sequel McNaughton was one of the key researchers founding a classification
theory of regular languages. This is documented by the monograph (with S. Papert)
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Counter-Free Automata, in which he tied the class of star-free languages to first-order
logic, supplying also several other characterizations, e.g., in terms of permutation-free
automata and loop-free nerve nets, and taking up also Schiitzenberger’s Theorem on
the equivalence between star-free expressions and group-free monoids. Further topics
of this research were the notions of “loop complexity” of finite automata and their
relation to star-height, and a characterization (with Kim and McCloskey) of the class
of locally testable languages.

By the mid-sixties McNaughton had become an established name in four fields: phi-
losophy, mathematical logic, formal linguistics, and computer science.

For many researchers, McNaughton is best known for his work on automata over
infinite strings. In his landmark paper of 1966, Testing and Generating Infinite Sequ-
ences by a Finite Automaton, he demonstrated the central theorem of omega-automata
theory, namely the determinization of nondeterministic Biichi automata by a transfor-
mation into deterministic Muller automata. Often this result is referred to as “McNau-
ghton’s Theorem”. His ingenious construction motivated research that is pursued until
today, aiming at reducing the number of states of deterministic automata and at uni-
fying determinization with other constructions (such as complementation).

At the same time he addressed “Church’s synthesis problem”, which asks for a con-
struction of a non-terminating finite-state transducer, given a specification of the de-
sired relation between input stream and output stream. It was McNaughton who pro-
posed to study this problem in the framework of infinite games, thus starting a deve-
lopment which has led to a fruitful and active branch of current theoretical computer
science. McNaughton’s proposal was first presented in a 1965 MIT technical report
Finite-State Infinite Games. Also his later paper (of 1993) Infinite Games Played on
Finite Graphs and his last contribution in this area, titled Playing Infinite Games in
Finite Time (2000), were influential in developing this theory and motivating new ap-
proaches to solve infinite games.

Another important area of McNaughton’s research, into which he entered in the
early 1980’s, was string rewriting systems (or Thue systems). One of the outcomes of
this research, done together with his doctoral student P. Narendran and with F. Otto,
was the concept of “Church-Rosser Languages” or “McNaughton Languages”, leading
to the JACM (1988) paper Church-Rosser Thue Systems and Formal Languages. He
also made contributions to the study of special string rewriting systems (where one
side of the identities is the empty word) and to the termination problem for single-rule
string rewriting systems.

Bob McNaughton was a great teacher. His PhD students include John Corcoran, An-
thony Dos Reis, David Hannay, Robert McCloskey, Paliath Narendran, Gil Porter, John
Spagnuolo, Robert Winder, and Hisao Yamada. For many other former students, among
them Aravind Joshi and Samuel Litwin, he was an inspiring mentor and role model.
His textbook Elementary Computability, Formal Languages, and Automata (1982) is a
masterpiece in clarity, supplied with many brilliant exercises.

All those who knew Bob McNaughton will keep precious memories of him as a warm-
hearted and generous person. The community of theoretical computer science will miss
his pioneering leadership and masterful creativity.

John Corcoran, Paliath Narendran, Wolfgang Thomas
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AUTOMATA COLUMN

MIKOLAJ BOJANCZYK, University of Warsaw

bojanCmimuw.edu.pl

McNaughton’s Theorem

In the logic and automata community, Robert McNaughton is perhaps best known
for his determinisation result for automata on infinite words, as mentioned in the
obituary. Below, I try to explain the significance of this result.

Automata can also be run on infinite words, i.e. words where positions are indexed
by natural numbers. When automata are used as a tool for logics, such as temporal
logics used in verification, infinite words are at least as important as finite words.

For infinite words, it is not immediately clear what the acceptance condition should
be, since the automaton runs forever. In a seminal paper, J. R. Biichi proposed what is
now called the Biichi condition: a run of an automaton is considered accepting if accep-
ting states are visited infinitely often. He proved that nondeterministic automata with
this acceptance condition have the same expressive power as monadic second-order
logic (MSO). The key lemma in Biichi’s proof says that the class of languages recogni-
sed by nondeterministic Biichi automata is closed under complementation. To prove
this lemma, Biichi did not use determinisation — instead, he showed how to directly
convert a nondeterministic automaton into another nondeterministic automaton reco-
gnising the complement language. In fact, determinisation fails for Biichi automata,
e.g. the language “infinite words over the alphabet {a,b} with finitely many occurren-
ces of the letter b” is recognised by a nondeterministic Biichi automaton, but not by
any deterministic Biichi automaton.

After Biichi’s paper, it was known that, over infinite words, nondeterministic auto-
mata (with the Biichi acceptance condition) are equivalent to MSO, and both are equ-
ivalent to w-regular expressions (a natural notion of regular expressions for infinite
words). This left open the problem: is there also a deterministic model of automata for
infinite words?

This problem was solved by McNaughton in 1966, in a paper called “Testing and
Generating Infinite Sequences by a Finite Automaton”. This paper shows that every
w-regular expression can be converted into a deterministic automaton, which easily
implies that nondeterministic Biichi automata can be converted into deterministic au-
tomata. As mentioned before, the Biichi condition is not sufficient for deterministic
automata, so McNaughton used deterministic automata with a more general accep-
ting condition, which is currently called the Muller condition. To specify the Muller
condition, one gives a family of subsets of states (as opposed to the single set of states
used in the Biichi condition). A run is considered accepting if the set of states that it
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visits infinitely often belongs to the family. A typical Muller condition would be: “either
states p and ¢ appear infinitely often but not state r, or states p and r appear infinitely
often but not state ¢”. The condition was proposed by D. E. Muller in 1963, in a paper
on determinisation which unfortunately contained a flaw.

McNaughton’s result was a true breakthrough. Apart from answering a very natural
and deep problem, the determinisation result became a crucial element of later fun-
damental results on automata and logic, like Rabin’s theorem MSO on infinite trees,
or Biichi and Landweber’s solution to Church’s synthesis problem. There is now a rich
bibliography on determinisation, with many alternative approaches, of which probably
the best known is the Safra construction. After almost fifty years, the topic is still a li-
vely research area, and new papers on determinisation appear every year (e.g. at least
four papers in the last two years). Nevertheless, even with the simplest modern pro-
ofs, determinisation remains difficult, and there are no proofs which are substantially
shorter than McNaughton’s original 4-page proof.
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COMPLEXITY COLUMN

NEIL IMMERMAN, University of Massachusetts Amherst

immerman@cs.umass.edu

In the 1980’s Eric Lander, Jin-Yi Cai, Martin Furer and I began to explore the power
of fixed point logic with counting (FPC). This natural class is deeply entwined with the
challenge of capturing the class of polynomial-time graph properties and determining
the complexity of graph isomorphism — problems that remain open. Despite that, so
much more is now known about the remarkable power of FPC. Anuj Dawar explains
in the following lovely survey.
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The Nature and Power of Fixed-Point Logic
with Counting

Anuj Dawar, University of Cambridge

In 1982, Neil Immerman proposed an extension of fixed-point logic by means of counting quantifiers (which
we denote FPC) as a logic that might express all polynomial-time properties of unordered graphs. It was
eventually proved (by Cai, Fiirer and Immerman) that there are polynomial-time graph properties that
are not expressible in FPC. Nonetheless, FPC is a powerful and natural fragment of the complexity class
PTime. In this article, I justify this claim by reviewing three recent positive results that demonstrate the
expressive power and robustness of this logic.

1. INTRODUCTION

Neil Immerman showed in [Immerman 1982] that fixed-point logic—FP, a formalism
extending first-order logic with a mechanism for defining predicates recursively—could
define exactly the polynomial-time decidable properties of finite structures provided
that the formulas had access to a linear order on the elements of the structures (a
result established independently by Vardi [1982]). In his paper, Immerman asks the
question whether the requirement of having a linear order could be replaced by allow-
ing instead the logic to express the cardinalities of definable sets. This leads to the
definition of Fixed-Point Logic with Counting (FPC), the extension of first-order logic
with a mechanism for iteration and a mechanism for counting. Immerman’s question
was motivated by two considerations. On the one hand, the requirement for a linear
order imposes an extraneous condition on the structures allowing us to express prop-
erties that are not really properties of the underlying structure at all, and one would
like to avoid this. On the other hand, the only known examples of structural prop-
erties that could not be expressed in FP were cardinality properties, which could be
expressed once a mechanism for counting is included.

It was not long after the question was raised that it was shown, by Cai et al. [1992]
that there are, indeed, polynomial-time properties of graphs that cannot be expressed
in FPC. The question of whether there is a natural logic in which one can express all
and only the polynomial-time (PTime) decidable properties of finite structures remains
open. There have been several proposals of logics that properly extend the expressive
power of FPC while remaining within PTime. These include logics with choice oper-
ators [Gire and Hoang 1998], choiceless machines [Blass et al. 1999] and logics with
matrix rank operators [Dawar et al. 2009]. However, none of these has been as exten-
sively studied as FPC (see, for instance, the monograph by Otto [1997] for an extensive
discussion of the logic). FPC, though no longer a candidate for capturing PTime, seems
to capture an intriguing class of problems within PTime worthy of study in its own
right. That makes the logic an important focus of continuing investigation.

In this article, I take a look at three recent results about the expressive power of
FPC that support the case that the FPC-definable properties form a natural and pow-
erful fragment of PTime. First of these is the monumental result of Grohe that shows
that on any class C of structures that excludes some graph minor (precise definitions
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of these notions are given in Section 3) FPC captures all of PTime. This is the culmina-
tion of a decade of work exploring the expressive power of FPC on restricted classes of
structures using the methods of structural graph theory. The second result (explored
in Section 4) is one that establishes the surprising power of FPC to express linear-
programming problems and uses this to settle a fifteen-year-old conjecture of Blass,
Gurevich and Shelah. The third result, reviewed in Section 5, characterizes the ex-
pressive power of FPC in terms of families of circuits restricted by a natural symmetry
condition. This frames the class of problems definable in FPC in the context of cir-
cuit complexity and reinforces the view that this is a natural and robust class. In this
article, the aim, of course, is not to prove these results but to explain the context in
which they are proved, the nature of their contribution and explore some of the ideas
involved in the proofs. But, first of all, we begin by reviewing the definitions and some
background of the logic FPC.

2. FIXED-POINT LOGIC WITH COUNTING

Fix a relational vocabulary o, and let FO[o] denote first-order logic over this vocab-
ulary. By this we may mean the collection of first-order o-formulas or we may also
mean the collection of o-classes of finite structures that are definable in first-order
logic. In general, we may drop the mention of the vocabulary o if it is implicit and
just write FO. FP denotes the extension of FO with a fixed-point operator. Fixed-point
operators come in different varieties, such as the least-fixed-point operator and the
the inflationary-fixed-point operator. For our purposes here, it is most convenient to
just consider inflationary fixed-points. For details of the different logics one can obtain
with such fixed-point operators and their expressive power, the interested reader may
consult [Ebbinghaus and Flum 1999]. By Immerman [1986] and Vardi [1982], we know
that on ordered structures, FP expresses exactly those properties that are decidable in
polynomial-time. However, in the absence of order, simple counting properties, such as
saying that the number of elements in a structure is even, are not definable.

The Logic. Fixed-point logic with counting (FPC) extends FP with the ability to ex-
press the cardinality of definable sets. The logic has two sorts of variables: x1, xo, ...
ranging over the domain elements of the structure, and vy, 15,... ranging over the
non-negative integers. If we allow unrestricted quantification over non-negative inte-
gers, the logic would be powerful enough to express undecidable properties. In Immer-
man’s original proposal, number variables were restricted to taking values in the set
{0,...,n} where n is the number of elements in the domain of the structure of inter-
pretation. In the formal definition below, we adopt another convention (suggested by
Grohe) of requiring quantification of number variables to be bounded by a term. In ad-
dition, we also have second order variables X;, Xo, ..., each of which has a type which is
a finite string in {element, number}*. Thus, if X is a variable of type (element, number),
it is to be interpreted by a binary relation relating elements to numbers. The logic
allows us to build up counting terms according to the following rule:

If ¢ is a formula and x is a variable, then #x¢ is a term.

The intended semantics is that #x¢ denotes the number (i.e. the non-negative integer)
of elements that satisfy the formula ¢. The formulas of FPC are now described by the
following set of rules:

— all atomic formulas of first-order logic are formulas of FPC,;

—if 71 and 7, are counting terms (that is each one is either a number variable or a term
of the form #x¢) then each of 71 <  and 71 = 7, is a formula;

—if ¢ and ¢ are formulas then so are ¢ A ¢, ¢ V¢ and —;
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—if ¢ is a formula, x is an element variable, v is a number variable, and 7 is a counting
term, then 3z ¢ and v < 7 ¢ are formulas; and

—if X is a relation symbol of type a, z is a tuple of variables whose sorts match the
type a and t is a tuple of terms of type «, then [fpy ,¢](t) is a formula.
The intended semantics here is that the tuple of elements denoted by t is in the
inflationary fixed-point of the operator defined by ¢, binding the variables in X, z.

For details of the semantics and a lot more about the logic I refer the reader to Otto’s
excellent monograph [Otto 1997]. Here, I illustrate the use of this logic with some
examples. In what follows, we use A and B to denote finite structures over a vocabulary
o and A and B to denote their respective universes.

A standard example of the power of inductive definitions is that we can use them to
say a graph is connected, a property that is not expressible in FO.

Example 2.1. The following formula:
Vqu[prYzy (z =y V3Iz(E(z,2) NT(2,9))](u,v)

is satisfied in a graph (V, E) if, and only if, the graph is connected. Indeed, the least relation
T that satisfies the equivalence T'(z,y) = « = y VvV 32(E(x,2) A T(z,y))) is the reflexive and
transitive closure of E. This is, therefore the fixed point defined by the operator fp. The formula
can now be read as saying that every pair u, v is in this reflexive-transitive closure.

The standard example of a property not definable in FP is to say that the number of
elements in a structure is even.

Example 2.2. The following sentence is satisfied in a structure A if, and only if, the number
of elements of A that satisfy the formula ¢(z) is even.

Jn < [#xd|Tve < vi(va = [#ag] A (v2 +v2 =11))

In particular, taking ¢ to be a universally true formula such as x = x, we get a sentence that
defines evenness. Here we have used the addition symbol in the subformula vo + v2 = v;. It
should be noted that this denotes a relation that is easily definable by induction on the domain
of numbers.

Besides using formulas of FPC to define classes of structures, we also use it to de-
fine a new structure from a given one. An FPC-interpretation of a vocabulary 7 in a
vocabulary o is a sequence of o-formulas, including a formula 6 for each symbol R of
7 which, when interpreted in a o-structure A, yield a definition of a 7-structure ®A.
More precisely, the universe U of ®A is the set of tuples of elements (which may be
tuples involving numbers as well as elements of A) satisfying some particular formula
0y, and the interpretation of each = symbol R is given by the set of those tuples in U
satisfying 0. We omit some technical details here and the interested reader may con-
sult [Immerman 1999] where an interpretation is also called a query or [Grohe 2014,
Chapter 2], where it is called a transduction.

Finite Variable Logics. A key tool in analysing the expressive power of FPC is to
look at equivalence in a weaker logic—first-order logic with counting quantifiers and
a bounded number of variables. For each natural number i, we have a quantifier 3
where A | J'x ¢ if, and only if, there are at least i distinct elements a € A such that
A = ¢la/z]. While the extension of first-order logic with counting quantifiers is no
more expressive than FO itself (in contrast to the situation with counting terms), the
presence of these quantifiers does affect the number of variables that are necessary to
express a query. Let C* denote the k-variable fragment of first-order logic with count-
ing quantifiers. That is, C* consists of those formulas in which no more than & vari-

ables appear, free or bound. For two structures A and B, we write A =¢ “ B to denote

ACM SIGLOG News 10 January 2015, Vol. 2, No. 1



that the two structures are not distinguished by any sentence of C*. The link between
this and FPC is the following fact, established by Immerman and Lander [1990]:

THEOREM 2.3. For every sentence ¢ of FPC, there is a k such that if A =" B, then
A E¢if and only if, B E ¢.

Indeed, this theorem follows from the fact that for any formula ¢ of FPC, there is a k
so that on structures with at most n elements, ¢ is equivalent to a formula 6,, of C*
Additionally, it can be shown that the quantifier depth of 6,, is bounded by a polynomial
function of n, but the important bound for us is that the number of variables k is
bounded by a constant that only depends on ¢.

The equivalence relations =C" have many different characterisations, some of which
arose in contexts removed from the connection with logic, such as the Weisfeiler-
Lehman family of equivalences arising in the study of graph isomorphism (see the
discussion in [Cai et al. 1992] for the connection). Particularly interesting are the

characterisations of =C" in terms of two-player games, including the counting game
of Immerman and Lander [1990] and the bijection game of Hella [1992]. These provide

a means of arguing that two structures A and B are =C"-equivalent. By Theorem 2.3,
this can then be used to show that some property is not definable in FPC, by showing

that it is not closed under =C" for any fixed k.

Inexpressibility Results. The suggestion that FPC might be sufficient to express all
properties in PTime arose from the intuition that it addresses the two obvious short-
comings of FO by providing a means to express inductive definitions and a means of
counting. In a sense, all algorithms that are “obviously” polynomial-time can be trans-
lated into the logic. Nonetheless, an ingenious construction by Cai et al. [1992] uses
games to give a polynomial-time decidable class of graphs that is not definable in FPC.
More precisely, they show how to construct a sequence of pairs of graphs (G, Hy), one
for each k € w such that:

— for each k, G, =C" Hy;
— for each k, G, # Hy, i.e. the graphs are not isomorphic; and
— Gy, and Hy, have maximum degree 3.

It is an immediate consequence of these facts that the problem of graph isomorphism
for graphs of degree 3 is not expressible in FPC. However, this problem is known to be
in PTime by a result of Luks [1982].

A number of other conclusions on the limitations of the expressive power of FPC
can be drawn from the result of Cai et al. Such results typically fall into one of two
classes. In the first category are non-expressiblity results that follow from the result of
Cai et al. by means of reductions. For instance, there is no FPC sentence that defines
the graphs with a Hamiltonian cycle. This is because, by a result of Dahlhaus [1984],
this problem is NP-complete under first-order reductions, and FPC is closed under
such reductions. Hence, as long as we have some problem in NP that is not definable
in FPC, it follows that Hamiltonicity is not definable. By an older result of Lovasz
and Gacs [1977] we also know that satisfiability of Boolean formulas in CNF (suit-
ably encoded as a relational structure) is NP-complete under first-order reductions and
therefore this is also not definable in FPC. Interestingly, it remains an open question
whether 3-SAT is NP-complete under first-order reductions.

In the second category of non-expressibility results that follow on from Cai et al.
are those proved by adapting their methods. For instance, it is known that graph
3-colourability is not NP-complete under first-order reductions (indeed, the class of
problems that reduce to it obeys a 0-1-law, see [Dawar and Gradel 2010]). Still, it has
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been shown [Dawar 1998] that 3-colourability is not definable in FPC by a construc-
tion of graphs adapting that of Cai et al. More recently, Atserias et al. [2009] show
that the problem of determining whether a system of linear equations (modulo 2) is
solvable cannot be expressed in FPC, though this is a problem in PTime. By means
of first-order reductions, they then show that this implies that a host of constraint
satisfaction problems (characterised by algebraic properties) are not definable in FPC,
including 3-colourability and 3-SAT.

It should be noted that in all cases mentioned, the problem is shown to be not defin-
able in FPC by establishing the stronger statement that the problem is not invariant

under =¢" for any fixed k. Of course, there are problems that are invariant under =C*
for some k but still not definable in FPC, for instance, problems that are not in PTime

at all. Could it be that every problem in PTime that is invariant under =C" for some
k is also in FPC? This remains an open question and I refer the interested reader to
Otto [1997] for a thorough discussion.

Capturing Results. Alongside results establishing the limits of the expressive power
of FPC, there has been a series of results showing that FPC is powerful enough to
express all polynomial-time decidable properties, provided that we restrict the class of
structures in some way. Of course, we have already noted above that FPC (even without
the counting extension) suffices to capture PTime on ordered structures. One impor-
tant line of investigation has sought to examine classes of structures based on sparse
graphs. An early result in this vein was due to Immerman and Lander, who showed
that FPC captures PTime on trees. This was generalized in two distinct directions by
Grohe [1998], who showed that FPC capture PTime on planar graphs and Grohe and
Marino [1999] who show that FPC captures PTime on graphs of bounded treewidth.
These results were the beginning of a long progression which leads to Grohe’s theo-
rem establishing that FPC captures PTime on any class of structures whose adjacency
graphs form a proper minor-closed class. This generalizes the prevous mentioned re-
sults and that is the subject of the next section.

3. MINOR-CLOSED CLASSES

With any o-structure A, we associate a (loop-free, undirected) graph I'A, which we
call the adjaceny graph of A (also known as the Gaifman graph of A). This is the
graph with vertex set A and in which two vertices v and v are adjacent if there is
some relation R in ¢ and some tuple t € R such that both u and v occur in t. A very
useful methodology for studying well-behaved classes of finite structures is to restrict
attention to structures with adjacency graphs from some restricted graph class. This
has enabled the deployment of techniques from structural graph theory in the study of
finite model theory (see [Dawar 2007] for a short survey). In particular, well-behaved
classes of finite structures can be defined using the graph minor relation. In the rest
of this section, I talk of graphs and classes of graphs. All the results about definability
and capturing PTime that are stated for a class of graphs C apply equally well to a
class of relational structures all of whose adjacency graphs are in C.

Graph Minors. We say that a graph H is a minor of a graph G and write H < G,
if H can be obtained from G by means of repeated applications of the operations of (i)
deleting an edge; (ii) deleting a vertex, and all edges incident on it; and (iii) contracting
an edge. Here, the last operation is one where we remove an edge (u, v) and replace the
two vertices u and v by a new vertex whose neighbours are all neighbours of v and v
(other than v and v themselves). A more formal definition is that H = (U, F') is a minor
of G = (V, E) if there is a set U’ C V and a surjective map M : U’ — U such that

—for each u € U, M ~*(u) induces a connected subgraph of G; and
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— for each edge (u,v) € F, there is an edge in E between some x € M ~!(u) and some
y € M~1(v).

Intuitively, H is a minor of G if the “structure” of H can be found inside G. As a simple
example, if H is a triangle (denoted K3), then H is a minor of G if, and only if, G
contains a cycle.

Say that a class C of graphs excludes H as a minor if H is not a minor of any graph
in C. Thus, the class of graphs that exclude K3 as a minor is exactly the class of acyclic
graphs. Say C is minor-closed if any minor of any graph in C is also in C. It is a proper
minor-closed class if it is minor-closed and is not the class of all graphs. Clearly, any
proper minor-closed class of graphs excludes some graph as a minor. Indeed it is char-
acterised by the set of minor-minimal graphs that it excludes. Also, any graph class
that excludes some graph H as a minor is included in a proper minor-closed class. In
particular, it is included in the class of all graphs that do not have H as a minor, which
is clearly minor-closed, by transitivity of the minor relation.

A famous theorem of Wagner [1937] (building on earlier work by Kuratowski [1930])
states that a graph G is planar if, and only if, neither K5 (the clique on 5 vertices)
nor K33 (the complete bipartite graph on two sets of three vertices) is a minor of G.
Thus, planar graphs are a proper minor-closed class that is characterised by two for-
bidden minors. The theory of graph minors was developed through a series of papers
by Robertson and Seymour culminating in the proof of the graph minor theorem:

THEOREM 3.1 ([ROBERTSON AND SEYMOUR 2004]). In any infinite collection
{G; | i € w} of graphs, there are i, j with G; < G;.

In other words, there are no infinite anti-chains in the graph minor relation. Since the
set of minor-minimal elements that are excluded from some proper minor-closed class
C form an anti-chain, an immediate corollary to the theorem is that any such class is
characterised by a finite set of forbidden minors.

COROLLARY 3.2. For any minor-closed class C, there is a finite collection F of graphs
such that G € C if, and only if, I’ A G for all F € F.

This corollary has important algorithmic consequences. In particular, since Robertson
and Seymour also show [Robertson and Seymour 1995] that for every H, there is a
cubic time algorithm that decides if a given G has H as a minor, it follows that every
proper minor-closed class is decidable by a cubic time algorithm. Indeed, if C is such a
class and F the finite collection of forbidden minors that characterize it, an algorithm
for testing membership in C is obtained by taking a graph G and checking for each
H € F that H is not a minor of G.

Capturing PTime. We can now state the theorem of Grohe.

THEOREM 3.3 (GROHE [GROHE 2014]). FPC captures PTime on any proper minor-
closed class C.

Note that, since any class C that excludes a minor is included in some proper-minor
closed class, it follows that FPC captures PTime on any class of structures whose adja-
cency graphs exclude some minor.

The full proof of Theorem 3.3 has not yet been published but appears in a monograph
of more than 400 pages that is available from the author’s website [Grohe 2014]. The
statement of the result, and a proof of the important special case of classes of graphs
C embeddable in a fixed surface, have been published in [Grohe 2012]. It is clearly not
possible, in the confines of this column, to even sketch the proof of Theorem 3.3, but I
will try to highlight some of the important ideas.
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Say that a class C of o-structures admits FPC canonization if there is an FPC inter-
pretation that maps each structure A in C to a 0 W {<}-structure A< whose o-reduct
is isomorphic to A and on which < is interpreted as a linear order of the universe.
In other words, the canonization allows us to define an ordered version of each struc-
ture in C from the structure itself. In particular, by the invariance properties of FPC,
a canonization has the property that two structures are isomorphic if, and only if, the
canonization takes them to isomorphic ordered structures. Checking isomorphism of
ordered structures is trivial, so an FPC canonization on a class C also gives us an FPC-
definable isomorphism test on C. Since FPC captures PTime on ordered structures, it
is not difficult to see that for any class C that admits FPC canonization, FPC captures
PTime on C. Grohe shows that for any graph H, there is an FPC interpretation that is
a canonization on the class of graphs that omit H as a minor.

In order to prove the result, Grohe develops a version of the structure theory that
Robertson and Seymour developed in the proof of the graph minor theorem, but in a
version that respects definability. An essential ingredient of Robertson and Seymour’s
proof of Theorem 3.1 is known as the structure theorem [Robertson and Seymour
2003]. Introducing all the elements required for a formal statement of the theorem
would take us too far afield, so we will be content with an informal statement. The
structure theorem essentially says that for each H, there is a k such that a graph G
that excludes H as a minor admits a tree decomposition in which each bag is almost
embeddable in a surface of genus k. The difficulty in using this decomposition theorem
to derive an FPC canonization for graphs excluding H as a minor is that the particular
tree decomposition constructed by Robertson and Seymour is not generic. That is to
say, the construction relies on a particular presentation of the graph, is not invariant
under automorphisms of the graph and so cannot be defined by formulas that neces-
sarily respect such automorphisms. Indeed, it is not clear that any generic form of such
a tree decomposition can be defined.

To get around this difficulty, Grohe defines the notion of a treelike decomposition
of a graph G. This is not a tree decomposition at all. Rather, it is a directed acyclic
graph decorated with bags that are sets of vertices of G. The definition includes tech-
nical conditions on connectivity and consistency of these bags that ensure that it in-
cludes within it a tree decomposition of GG. Indeed, a treelike decomposition of G can
be obtained from a tree decomposition by taking the images of all bags under auto-
morphisms of G. An essential step in Grohe’s construction is a definable version of
Robertson and Seymour’s structure theorem, showing that there is an FPC interpreta-
tion which, on graphs that exclude H as a minor, defines a treelike decomposition into
bags that are almost embeddable in a fixed surface.

The definable structure theorem is arrived at by a series of steps. First, Grohe shows
that there is an FPC-definable decomposition of planar graphs into their 3-connected
components. This is lifted to graphs embeddable in an arbitrary surface, by an induc-
tive argument on the surface. More heavy lifting is required, based on elements of
Robertson and Seymour’s structure theory, to obtain from this a definable treelike de-
composition. The final element is that from such a definable treelike decomposition,
one can show that the class of graphs excluding H as a minor admits FPC canoniza-
tion, leading to Theorem 3.3.

There are two significant consequences of this construction to note here. One is that
every proper minor-closed class of graphs is itself definable by some FPC sentence. The
other is that for any such class C, there is a k such that =" is the same as isomorphism
on graphs in C. In other words, the k-dimensional Weisfeiler-Lehman algorithm suf-
fices to decide graph isomorphism on C. Of course, the exact value of k£ depends on the
finite set of excluded minors that characterise the class C and for many proper minor-
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closed classes, we do not know this set. But, in other cases, such as planar graphs, it
would be interesting to pinpoint the precise value of & for which this happens.

4. LINEAR PROGRAMMING AND MATCHING

We noted above (see page 11) that the original intuition that led to the question of
whether FPC captures PTime was that all problems that admit “obvious” polynomial-
time algorithms are expressible in FPC. The last section showed a whole class of
problems—the proper minor-closed classes of graphs—whose membership in PTime
is far from obvious, but which nonetheless turn out to be definable. In this section,
we turn to another fundamental algorithmic technique which is used in a rather non-
obvious way to establish that some problems are in PTime.

Linear programming is a widely used approach to solving combinatorial optimiza-
tion problems. It provides a powerful framework within which optimization problems
can be represented, as well as efficient methods for solving the resulting programs. In
particular, it is known since the work of [Khachiyan 1980] that there are polynomial-
time algorithms that solve linear programs.

Linear Programs as Structures. In general, a linear programming instance consists
of a set C of constraints over a set V' of variables. Each constraint ¢ consists of a vector
a. € QY and a rational b. € Q. The feasibility problem is to determine for such an
instance if there exists a vector x € Q" such that alx <b. for all ¢ € C. An instance
of the optimization problem is obtained if we have, in addition, an objective function
represented by a vector f € QV. The aim is then to find an z € Q¥ which satisfies all
constraints in C' and maximizes the value of f7z.

We want to consider instances of linear programming as relational structures that
may act as interpretations for formulas of FPC. For this, we consider structures whose
universe consists of three disjoint sets: V, C and B. The last of these is equipped with
a linear order and may be thought of as {0, ..., ¢}, i.e. an initial segment of the natural
numbers where t is large enough that all the rational numbers required to represent
our instance can be written down using at most ¢ bits for both numerator and denomi-
nator. We can then encode the linear programming instance through suitable relations
for the numerators, denominators and signs of the values involved. For instance, we
have a ternary relation N so that for c € C, v € V and b € B, N(c,v,b) holds if the
bth bit in the numerator of a.(v) is 1. It should be stressed that while the set B is
ordered, there is no order on the sets V and C. If there were, then feasibility of such
linear programming instances would be definable in FPC simply by the fact that all
polynomial-time decidable properties of ordered structures are definable.

Ellipsoid Method. In [Anderson et al. 2013], it is shown that the feasibility problem
and, indeed, the optimization problem, for linear programming, is definable in FPC.
The proof proceeds by means of expressing in the logic a version of Khachiyan’s el-
lipsoid method [Khachiyan 1980]. In short, the ellipsoid method for determining the
feasibility of a linear program proceeds by choosing a vector z € Q¥ (one may as well
begin from the vector of all zeroes) and calculating, based on the bit complexity of the
instance, an ellipsoid around z which is guaranteed to include the polytope defined
by the constraints C. Now, if z itself does not satisfy all the constraints in C, we can
choose one ¢ € C for which a’z > b, and use it to calculate a new vector 2’ and an
ellipsoid centred on z’ which still includes the polytope defined by C. The construction
guarantees that the volume of the new ellipsoid is at most half that of the original one.
This means that in a number of steps that is bounded by a polynomial in the size of the
instance, the process converges to a centre x that satisfies all the constraints in C or
the volume of the ellipsoid is small enough that we know for certain that the polytope
is empty.
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It is not difficult to show that all the calculations involved in computing the ellipsoid
and centres can be expressed in FPC (see [Holm 2010] for details on how linear algebra
using matrices without an order on the rows and columns can be expressed). The one
step in the algorithm outlined above that causes difficulty is the choice of a violated
constraint, which is used to define a new centre. There is no way, in any logical formal-
ism that respects automorphisms of the structure on which it is interpreted (as any
reasonable logic must) to choose an arbitrary element. However, the ellipsoid method
is quite robust and it still works as long as, at each stage, we can construct some hyper-
plane that separates our current centre 2 from all points in the polytope defined by C.
And, as shown in [Anderson et al. 2013], such a construction can be done canonically
by taking the set of all constraints in C that are violated by = and taking their sum as
our separating hyperplane. We thus get that feasibility of linear programs (and also
the linear programming optimization problem) are definable in FPC.

Separation Oracles. So far, we have considered linear programs represented explic-
itly. That is, all the constraints are written out as part of the input structure. Relying
on the robustness of the ellipsoid method, we can take this method further. In many
applications of linear programming, we are not given an explicit constraint matrix, but
some succinct description from which explicit constraints can be derived. In particu-
lar, the number of constraints may be exponential in the size of the input. The ellipsoid
method can be used in such cases as long as we have a means of determining, for any
vector x, whether it is in the polytope P described by the constraint matrix and, if it
is not, a hyperplane that separates x from the polytope. This is known as a separation
oracle for P. It is shown in [Anderson et al. 2013] that, as long as a separation oracle
for a polytope P is itself definable in FPC, then the corresponding linear programming
optimization problem can also be defined in FPC.

This reduction of optimization to separation reveals an interesting relationship of

linear programming with the equivalence relations =C" We are given a polytope P C
QV in the form of some relational structure A and an FPC interpretation ® which acts
as a separation oracle. That is, given an € QY (and we assume that V is part of the
universe of A, though the constraint set C is not and may, in general, be exponentially
larger than A), ® interpreted in a suitable expansion of A with = either determines
that z is in the polytope P or defines a hyperplane separating x from P. Then, there is
some k (the exact value will depend on @) so that we can take the quotient V' = V/_cx

(where =C" is defined with respect to the structure A) and project P to a polytope
P’ C Q' in such a way that feasibility and optimization with respect to P can be
reduced to similar questions about P’. This should be compared with [Grohe et al.
2014] where it is shown, essentially, that in the special case of explictly represented
constraint matrices, taking k£ = 2 gives a similar result. This is then used as a pre-
processing tool for optimizing the performance of linear programming solvers.

Maximum Matching. An important application given in [Anderson et al. 2013] of the
FPC definability of linear programming is to the maximum matching problem. Recall
that a matching in a graph G is a set of edges M so that each vertex in G is incident
on at most one edge in M. The maximum matching problem is then to find a matching
in G of maximum size. Note that it would not be possible, in FPC or any other logic,
to give a formula that would actually define the set M that is a maximum matching.
This is because M would not, in general, be invariant under automorphisms of G. For
instance, if G is K,,—the n-vertex complete graph—then it contains an exponential
(in n) number of distinct maximum matchings all of which map to each other under
automorphisms of G. However, it is shown in [Anderson et al. 2013] that the size of a
maximum matching in G can be defined in FPC. It is known, thanks to Edmonds [1965]
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that we can associate with a graph G a matching polytope with an exponential number
of constraints (and Rothvof3 [2014] has shown that this is essentially optimal) so that
optimizing over this polytope yields a maximum matching. Anderson et al. [2013] show
that a separation oracle for the matching polytope can be defined in FPC interpreted
on the graph G and hence deduce that the size of the maximum matching is definable.
This settles a fifteen-year-old question posed by Blass et al. [1999] who conjectured
that the existence of a perfect matching in G was not definable even in the stronger
formalism of Choiceless Polynomial Time with Counting.

5. SYMMETRIC CIRCUITS

Let us now turn to the relationship between definability in FPC and circuit complexity.
We start with a brief introduction to the formalism of circuit complexity.
A language L C {0,1}* can be described by a family of Boolean functions:

(fn)nEw : {O, 1}” — {0, 1}

Each f,, can be represented by a circuit C,, which is a directed acyclic graph where
we think of the vertices as gates suitably labeled by Boolean operators A, V, — for the
internal gates and by inputs z1, ..., z, for the gates without incoming edges. One gate
is distinguished as determining the output. If there is a polynomial p(n) bounding the
size of C,, (i.e. the number of gates in C,,), then the language L is said to be in the
complexity class P/poly. If, in addition, the family of circuits is uniform, meaning that
the function that takes n to C,, is itself computable in polynomial time, then L is in
PTime. For the definition of either of these classes, it does not make a difference if we
expand the class of gates that we can use in the circuit beyond the Boolean basis to
include, for instance, threshold or majority gates. The presence of such gates can make
a difference for more restricted circuit complexity classes, for instance when we limit
the depth of the circuit to be bounded by a constant, but not when we allow arbitrary
polynomial-size circuits. Also, in the circuit characterization of PTime, it does not make
a difference if we replace the uniformity condition with a stronger requirement. Say,
we might require that the function taking n to C,, is computable in DLogTime.

Circuits on Graphs. We are interested in languages that represent properties of re-
lational structures such as graphs. For simplicity, in what follows, let us restrict at-
tention to directed graphs, i.e. structures in a vocabulary with one binary relation.
A property of such graphs that is in PTime can be recognised by a family (C),),c. of
Boolean circuits of polynomial size and uniformity, as before, where now the inputs
to C,, are labelled by the n? potential edges of an n-vertex graph, each taking a value
of 0 or 1. Of course, given an n-vertex graph G, there are many ways that it can be
mapped onto the inputs of the circuit C,,. So, to ensure that the family of circuits is
really defining a property of graphs, we require it to be invariant under the choice of
this mapping. That is, each input of C,, carries a label of the form (i, j) for ¢, j € [n] and
we require the output to be unchanged under any permutation = € S,, acting on the
inputs by the action (i,5) — (7w(i),n(j)). It is clear that any property of graphs that is
invariant under isomorphisms of graphs and is in PTime is decided by such a family of
circuits.

From Logic to Circuits. It turns out that the properties of graphs that are definable
in logics such as FPC are decided by circuits with a stronger invariance condition. Say
that a circuit C,, is symmetric if any permutation = € S,, can be extended to an auto-
morphism of C,, which takes each input (¢, j) to (7w (i), 7(j)). It is clear that symmetric
circuits are necessarily invariant and it is not difficult to come up with examples that
show that the converse is not true.
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It is also not difficult to show we can translate a formula of first-order logic, say, in
the language of graphs into a family of symmetric circuits. Given a first-order sentence
¢ and a positive integer n, we define the circuit C? by taking as gates the set of pairs
(1, a) where ¢ is a subformula of ¢ and a is a tuple of values from [n], one for each
free variable occurring in . The input gates correspond to the atomic formulas and
the output gate is the one labelled by ¢. If the outermost connective in v is a Boolean
operation, the gate (¢, a) is labelled by that operator and it is connected to the gates
corresponding to subformulas in the obvious way. If ¢ is 326, then (v, a) would be an
OR gate with inputs from (0, aa) for all values a € [n] and similarly a universal formula
attaches to a large AND gate. It is not difficult to see that the circuits constructed are
symmetric as for any 7 € S,,, the map that takes (¢, a) to (¢, 7(a)) is an automorphism
of the circuit. Moreover, the depth of the circuit is a function of ¢, so a fixed formula
yields a family of circuits of constant depth. On the other hand, we can take a formula
¢ of fixed-point logic, FP, and for each n, obtain a first-order formula 6,, with % (inde-
pendent of n) variables and quantifier depth bounded by a polynomial in n so that ¢
and 6,, are equivalent on structures with at most n elements. Converting this into a
circuit by the translation above yields a polynomial-size family of symmetric Boolean
circuits (the size is bounded by ¢ - n* where ¢ is the number of sub-formulas of ¢) that
is equivelent to ¢. If we start with a sentence ¢ of FPC instead, we can use the transla-
tion to C* (see Theorem 2.3) to obtain a family of symmetric circuits with threshold (or
majority) gates. We need these additional gates to translate the counting quantifiers
that appear in the C* formula and Boolean gates will no longer suffice. Symmetric
circuits have been studied for the repesentation of properties defined in logic under
different names in the literature (see [Denenberg et al. 1986; Otto 1996]).

From Circuits to Logic. The recent paper [Anderson and Dawar 2014] establishes
that the correspondence between decidability by a family of symmetric circuits and
definability in logic is tight by giving translations in the other direction. In particular,
the following is shown there.

THEOREM 5.1. A class of graphs is accepted by a polynomially uniform symmetric
family of Boolean circuits if, and only if, it is definable by an FP formula interpreted in
G W ([n], <).

Here, G W (|n], <) denotes a structure consisting of a graph G together with a disjoint
set of elements [n] of the same cardinality as the set of vertices of G. In this structure,
we have the edge relation on the vertices of G and a linear order on the elements
[n] and no other relations. In particular, the vertices of G are not ordered and there
is no relation that connects the vertices of G with the elements of [n]. One can write
an FP formula for such structures that states that the number of vertices is even,
since this amounts to saying that the length of the linear order ([n], <) is even. But,
it is not difficult to show by a pebble game argument that no FP formula can say
that the number of edges in the graph G is even, even in the presence of the linear
order on the side. It follows from Theorem 5.1 that this simple invariant property of
graphs is not decidable by any polynimially-uniform family of symmetric circuits. It
also follows that allowing threshold or counting gates in symmetric circuits leads to
a model that is more powerful than just Boolean circuits, in contrast to the situation
of general polynomial-size circuits. The exact power of polynomially uniform families
of symmetric circuits with threshold gates is determined by the following theorem
from [Anderson and Dawar 2014]:

THEOREM 5.2. A class of graphs is accepted by a polynomially uniform symmetric
family of threshold circuits if, and only if, it is definable in FPC.
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A consequence of Theorems 5.2 and 5.1 is that any translation of invariant Boolean
circuits into equivalent symmetric circuits, even allowing additional threshold gates
in the latter, will necessarily involve a super-polynomial blow-up in the size of the
circuits.

Theorem 5.2 gives a natural and purely circuit-based characterization of FPC defin-
ability, justifying the claim that this is a natural and robust class. It also shows that
inexpressibility results for FPC can be understood as lower bound results against a
natural class of circuits. The holy grail of circuit complexity is to prove lower bounds
against the class of polynomial-size circuit families. So far, lower bounds have been
proved by imposing various restrictions on the families, such as monotonicity (where
a famous result of Razborov [1985] showed that no polynomial size family of monotone
circuits can decide the clique problem) or bounded depth. We can now add symmetric
circuits to the catalogue of circuit classes against which we are able to prove lower
bounds. It is instructive to put this in the context of the expressibility and inexpress-
ibility results for FPC mentioned previously. In particular, it follows that there is a
polynomially uniform family of symmetric threshold circuits for deciding whether a
graph has a perfect matching. But, there is no such family that decides whether a
graph contains a Hamiltonian cycle. A natural circuit model that separates these two
problems is certainly an intriguiing development.

Proof Idea. To conclude this section, I present some of the ideas underlying the proofs
of Theorems 5.1 and 5.2. One direction is easy, by the argument given above about
translating formulas into circuits. In the other direction, we want to use the symmetry
of the circuit to derive an equivalent formula in the fixed-point logic. If C,, is a symmet-
ric circuit taking n-vertex graphs as input, we can assume without loss of generality,
that the automorphism group of C,, is exactly the symmetric group S, acting in the
natural way on its inputs. For a gate g in C,,, we say that a set X C [n] supports g if
for every m € S,, such that 7(z) = « for all © € X, we also have 7(g) = g. Now, when
we consider the circuit families (C,,),ec. that arise as translations of FPC formulas,
we can note that there is a constant & such that all gates have a support of size at
most k. This is because the gates are labelled by pairs (¢, a) where a is a k-tuple of
elements from [n] and it is easily checked that the set of elements that appear in a is
a support of the gate. The main technical lemma in the proof of Theomem 5.2 estab-
lishes that this is, in fact, necessary for all symmetric circuits: if (C},),c. is a family of
symmetric circuits of polynomial size then there is a k such that all gates in C,, have a
support of at most k& elements. Moreover, given a description of the circuit C,,, there is
a polynomial-time algorithm that will determine a minimal size support of each gate.
Now, given a graph G on n vertices and a bijection ~ : [n] — V(G) that determines how
this graph is mapped to the inputs of C,,, whether a gate g in C,, evaluates to TRUE
is completely determined by ~ restricted to the support of g. We can thus represent
the set of all maps v that make g true as a k-ary relation on G. These k-ary relations
admit an inductive definition (by induction on the construction of the circuit C,,) which
allows us to turn the circuit family into a formula of FP (for Boolean circuits) or FPC
(if the circuit also has threshold gates). This relies on the fact that the map that takes
n to C,, is polynomial-time computable and therefore definable in FP on ordered struc-
tures. We use the linear order available “on the side” in Theorem 5.1 for this. It is not
necessary in the proof of Theorem 5.2 as it can be replaced by the use of numerical
variables.

6. CONCLUSION

I noted in the introduction that the conjecture that FPC captures PTime was based on
the intuition that algorithmic techniques that are obviously polynomial-time are all ex-
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pressible in this logic. The result of Cai et al. and subsequent results on inexpressiblity
in FPC essentially show that one important algorithmic technique, that of Gaussian
elimination, is not expressible in the logic. Nonetheless, the recent results surveyed
in this article show that many powerful and certainly non-obvious polynomial-time al-
gorithmic techniques are indeed expressible in FPC. In particular, we have seen that
FPC can express maximum matching in graphs, feasibility of linear programs and ar-
bitrary minor-closed classes of graphs. For each of these, the fact that the problem is
in polynomial-time was a major result of its day. Finally, the results of Section 5 show
further that FPC is a natural and robustly defined class by giving a characterization
of it by a natural and independently-motivated circuit model. Taken together, these
justify the claim that FPC is a natural and powerful class of problems.
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SECURITY & PRIVACY COLUMN

MATTEO MAFFEI, CISPA, Saarland University

maffei@cs.uni-saarland.de

The technical column on Security and Privacy of the SIGLOG newsletter kicks off
with two invited contributions.

— Catalin Hritcu (INRIA, Paris-Rocquencourt) reports on the recently organized “Joint
EasyCrypt-F*-CryptoVerif School 2014”. These three state-of-the-art security verifi-
cation tools constitute an example of how logic and program verification may bring
crucial contributions in the security domain. The presented material is available on-
line and is certainly of great interest for the readers of the SIGLOG newsletter.

— Véronique Cortier (Loria) overviews a topic that is of public interest and constitutes
an extraordinary research opportunity for logic and program verification researchers,
namely the security of electronic voting. Véronique’s work demonstrates the effective-
ness of formal methods in rigorously reasoning about the security of cryptographic
protocols in general, and electronic voting systems in particular. In this column,
Véronique reviews the state of the art in this field, pointing out research challenges
of particular interest for the SIGLOG community.

A special thanks to both authors for accepting the invitation and for their great
contributions!
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The Joint EasyCrypt-F*-CryptoVerif School 2014

Catalin Hrifcu, Inria Paris-Rocquencourt

1. OVERVIEW

Formal security verification tools are slowly reaching maturity. The Joint EasyCrypt-
F*-CryptoVerif School took place between 24 and 28 November 2014 in Paris and
taught participants how to use three state-of-the-art security verification tools, as well
as gave participants a glimpse of the formal foundations behind these tools. The school
brought together over 80 participants from 12 countries, with backgrounds spanning
security, cryptography, programming languages, and formal methods. The time of the
school was roughly evenly split between lectures and hands-on exercise sessions.! For
the exercise sessions participants installed and tried EasyCrypt, F*, and CryptoVerif
on their own laptops, under the guidance of members from the developer teams of the
tools. The school also contained three short invited talks: Hubert Comon on Uncon-
ditional Soundness, Véronique Cortier on Type-Based Verification of Electronic Voting
Protocols, and Matteo Maffei on Logical Foundations of Secure Resource Management
in Protocol Implementations.

2. EASYCRYPT

EasyCrypt is a toolset for reasoning about relational properties of probabilistic compu-
tations with adversarial code. Its main application is the construction and verification
of game-based cryptographic proofs. EasyCrypt was used to prove the security of com-
plex cryptographic constructions, including the Cramer-Shoup encryption scheme, the
Merkle-Damgaard iterative hash function design, and the ZAEP encryption scheme.
More recently, it has been used for proving the security of protocols based on garbled
circuits, and for the proof of security for authenticated key-exchange protocols and
derived proofs under weaker assumptions.

The EasyCrypt lectures were given by Gilles Barthe, Frangois Dupressoir, Ben-
jamin Grégoire, Benedikt Schmidt, Pierre-Yves Strub, who also jointly run the
exercise-sessions. The lectures presented (a) the code-based game-playing approach
to computer-aided cryptographic proofs and the connection to program verification;
(b) the foundations of EasyCrypt: probabilistic relational Hoare logic and program
transformations; (c) the ambient (classical higher-order) logic of EasyCrypt and the
most widely-used tactics; (d) grouping related concepts and lemmas into theories and
structuring proofs with sections; (e) using modules to achieve abstraction and support
high-level reasoning steps; (f) high-level cryptographic proof principles; (g) EasyCrypt
case studies; (h) verifying “real-world” security at the source-code level; (i) automated
proofs and synthesis; and (j) perspectives for the future.

The EasyCrypt exercise sessions involved proving (a) security against chosen plain-
text attacks (IND-CPA) for the Bellare and Rogaway 1993 and the Hashed E1Gammal
encryption schemes; (b) correctness of a stateful random generator that uses a pseudo-
random function (PRF); and (c) the PRP (pseudo-random permutation)/PRF switching
lemma.

1 The materials, including slides and exercises, are available on the website of the school:
https://wiki.inria.fr/prosecco/The_Joint_EasyCrypt-F*-CryptoVerif_School 2014
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3. F*

F* is a new ML-like functional programming language designed with program ver-
ification in mind. It has a powerful refinement type-checker that discharges verifi-
cation conditions using the Z3 SMT solver. F* has been successfully used to verify
nearly 50,000 lines of code, ranging from cryptographic protocol implementations to
web browser extensions, and from cloud-hosted web applications to key parts of the
F* compiler itself. The newest version on F* erases to both F# and OCaml, on which
it is based. It also compiles securely to JavaScript, enabling safe interoperability with
arbitrary, untrusted JavaScript libraries.

The F* lectures were given by Antoine Delignat-Lavaud, Cédric Fournet, and Nikhil
Swamy, and comprised (a) a high-level introduction into proving programs correct with
F*; (b) an overview of how F* deals with state and other effects; (c) an overview of type-
based verification at scale and miTLS, a verified reference implementation of TLS;
and (d) a more in-depth illustration of how to use types for modular verification of
cryptographic code.

The F* exercise sessions included (a) many basic examples: proving correctness of
a simple model of access control and of simple recursive functions on numbers (fac-
torial, fibonacci) and lists (mapping, finding, and sorting), and proving termination
for Ackermann and tail recursive functions, (b) several cryptographic examples: cryp-
tographic capabilities for accessing files, secure RPC using MACs, and verified en-
cryption padding; and (c) a case-study on formalizing the metatheory of the simply-
typed A-calculus, illustrating the use of F* as a proof assistant. The exercise sessions
were prepared and run jointly by: Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Catalin Hritcu, Chantal Keller, Markulf Kohlweiss, Aseem Rastogi,
Pierre-Yves Strub, and Nikhil Swamy.

4. CRYPTOVERIF

CryptoVerif is an automatic protocol prover sound in the computational model of cryp-
tography. It can prove secrecy and correspondences (e.g. authentication). The gener-
ated proofs are by sequences of games, as used by cryptographers. CryptoVerif was
successfully used for security proofs of various cryptographic schemes and protocols,
including Kerberos, OEKE, and the SSH transport layer protocol.

The CryptoVerif lectures and exercise sessions were run by Bruno Blanchet, the
main designer and developer of CryptoVerif. The lectures covered (a) the process cal-
culus used by CryptoVerif for expressing games; (b) representing security assump-
tions on primitives as indistinguishability properties; (c) syntactic transformations;
and (d) generating protocol implementations from CryptoVerif specifications. Two il-
lustrative examples were used during the lectures: encrypt-then-MAC and full domain
hash (FDH) signatures. In the exercise sessions the students used CryptoVerif to prove
(a) various security notions for encrypt-then-MAC (IND-CPA, IND-CCA2, INT-CTXT);
(b) the security (IND-CPA) of the Bellare and Rogaway 1993 encryption scheme; and
(c) authentication for the fixed version of the Woo-Lam shared-key protocol.
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Formal verification of E-voting:
solutions and challenges

Véronique Cortier, CNRS - Loria, France
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In the last ten years, electronic voting has been used in an ever growing number
of elections. There are many reasons for this development. First, some election modes
require a mechanized way for counting since the number of questions or the number
of choices is too large for a manual counting. Electronic voting also allows one to vote
from home, possibly avoiding long travels. Sometimes, it simply follows the trend of
using Internet in our daily life.

Of course, the use of electronic voting raises many questions: How to make sure my
vote will be counted? Does my vote remain private? How to trust the final result? Is it
possible to buy votes on the Internet? While some countries such as Estonia, France, or
Norway use electronic voting for legally binding elections, some other countries have
banned e-voting at least for some time. This is the case for example of the United
Kingdom, Netherlands, or Germany [Barrat et al. 2012]. Electronic voting is used nev-
ertheless and is likely to be used in most developed countries worldwide in non legally
binding elections like the election of many representative committees (administration
councils, scientific councils, etc.). Some of these elections may actually involve a large
number of voters (more than a million) and may have important issues for example
when it comes to elect the leader of a political party.

There is therefore an urgent need to offer secure, reliable, and trustworthy e-voting
systems. The research community in logics and program verification has already a long
tradition in developing analysis techniques for security protocols. E-voting protocols
raise however new research challenges.

1. PROPERTIES

What is a good e-voting system? This a wide question and we focus here only on secu-
rity properties the design of the system should offer. We will not discuss implementa-
tion or usability issues.

1.1. Privacy properties

A first family of properties is related to privacy. Any voting system should ensure that
how voters voted is not leaked to anyone. To this end, most voting systems encrypt
the votes on the voter’s computer with the public key of the election, before sending
it to the server. Note however that it is very difficult to protect against compromised
computers that may leak the choice of the voter to a malicious third party. One possi-
ble countermeasure is to use pre-received code sheets [Chaum 2001] to hide the actual
choice from the computer. Other currently studied solutions make use of (not neces-
sarily trusted) external secure devices that perform parts of the computation [Lipmaa
2014].

Protecting vote privacy is necessary but not always sufficient from a security point
of view. Ideally, a voter should not be able to show how he voted even if he is willing to.
This is to avoid vote buying or coercion: if a voter can prove how he voted, then he may
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be coerced to vote in a certain way or he may sell his vote. Systems resistant to such
attacks are called receipt-free or coercion resistant.

Another dimension of privacy is everlasting privacy. Will my vote remain secret in
twenty years? It could be very embarrassing if our votes could be revealed years later.
Most voting systems rely on cryptography which itself relies on computationally diffi-
cult problems. It is likely that in twenty years the keys in use nowadays will be broken,
either due to faster computers, or algorithms improvements, or the discovery of some
implementation flaws, and possibly a combination of those. It is therefore important
for e-voting systems to also be robust on the long term, even when keys are eventually
lost.

1.2. Verifiability properties

Anyone should be able to check that the final announced result does count all the votes
casted by the voters. This end-to-end verifiability property may be divided in several
sub-properties.

Individual verifiability ensures that each voter can check that his ballot appears on
the ballot box. A natural way to achieve individual verifiability is to allow the ballot
box to be publicly available on a website. But even if the ballot box is not available
to the voters, some public version of the ballot box may suffice for a voter to check
that his ballot has been successfully carried to the box. An example of such a case is
a voting system based on Pedersen commitments [Cuvelier et al. 2013], that aims at
everlasting privacy.

Then the announced result should correspond to the ballots on the box. This prop-
erty is often referred to as universal verifiability. Typically, talliers produce a (zero-
knowledge) proof of correct decryption. To preserve anonymity while offering verifia-
bility, the tally is either computed after shuffling the ballots through mixnets or using
homorphic encryption (e.g. El Gamal), which allows anyone to combine the votes before
decryption.

Lastly, it should be possible to check that only legitimate voters have voted, oth-
erwise the voting system may be subject to ballot stuffing. This is called eligibility
verifiability.

Verifiability ensures that the entire process can be watched. Not only it is a very
desirable property, but it also alleviates the task of auditing the implementation. There
is no need anymore to trust the entire code run on the election system. The idea is that
if something goes wrong it will be eventually noticed. It is even better if the faulty
behaviour can be identified. If something went wrong, who should be blamed? This
notion of accountability has been developed for example in [Kiisters et al. 2012] and is
very useful in the context of voting protocols.

2. EXISTING E-VOTING SYSTEMS

We briefly discuss some of the main voting systems in use and we present one of them
in more details, Helios.

2.1. Brief survey on existing e-voting systems

The Estonian voting system is a rather simple system: voters encrypt their votes and
sign the corresponding ballot, relying on the fact that Estonian citizens have an elec-
tronic ID card that contains a signing key. A voter may later query back his ballot to
check that it is part of the box. But there is no verifiability: voters cannot check that
their vote is actually counted nor that the result corresponds to the bulletin board.
A precise description of the system and its vulnerabilities can be found in [Springall
et al. 2014].
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The protocol used in Norway is developed by Scytl [Gjgsteen 2010; doc 2013]. Once
they have voted, voters receive a code by SMS, which can be used to check that their
ballot belong to the box. Voters may still not verify the announced result. However,
this protocol offers some “proxy-verifiability”: external (approved) auditors can check
the consistency of the ballot box and can check the proofs produced by the tallier when
decrypting the ballots.

Helios [Adida et al. 2009] is an academic protocol developed by Ben Adida [Adida
2008], based on a protocol proposed by Cramers et al [Cramer et al. 1997]. It is used
to elect the TACR board (International Association for Cryptologic Research) since
2010 [TACR ]. The ballot box is public so that anyone can check that his ballot is
present. The final result is also verifiable, based on either ElGamal encryption or
mixnet tallying (both options are available). Helios therefore offers both ballot pri-
vacy, individual, and universal verifiability. A variant of Helios, Belenios [Cortier et al.
2013], further guarantees eligibility verifiability. Note however that neither Helios nor
Belenios are receipt-free: these systems should be used in low-coercion environments.

Civitas [Clarkson et al. 2008] is one of the only protocols (if not the only one) to offer
both verifiability and coercion-resistance. When a voter is under coercion, he may vote
as prescribed using a fake credential. Once the coercer has left, the voter may vote
again, with a valid credential. A coercer may not distinguish a fake credential from a
valid one. Then invalid ballots are discarded after some shuffling, to guarantee that a
coercer can still not notice any difference. Anyone can check that only invalid ballots
have been rejected. However, to our knowledge, this protocol has not been used in
real elections due to some practical issues. In particular, getting rid of invalid ballots
requires a computation whose complexity is quadratic in the number of submitted
ballots.

We have focused here on purely electronic voting systems, where voters cast their
votes using the Internet. There are also a variety of hybrid systems where voters vote
at a polling station and are offered some means to check that their votes have been
counted. Such systems include for example Scantegrity [Chaum et al. 2008] and Prét-
a-voter [Ryan et al. 2009].

2.2. The Helios protocol in more details

An e-voting system should guarantee both privacy (no one know how I voted) and
verifiability (I can check that my vote has been counted). These two properties are con-
flicting and the design of an e-voting system requires a good balance between confiden-
tiality and verifiability. We explain how these two properties can be matched through
the example of the Helios protocol [Adida et al. 2009]. In Helios, the ballot box is public
(typically a web page) and anyone can access to it. Let pk denotes the public key of the
election. The corresponding decryption key sk is split among several authorities: all
the authorities need to collaborate to decrypt a message. For the sake of robustness, it
is actually better to use threshold decryption: only k out of n authorities are needed to
decrypt. This avoids to cancel a whole election because some authority has lost its key.
For simplicity, we assume here a referendum election where voters vote for 0 or 1.
Assume Alice wishes to vote v,4. She simply encrypts her vote with the public key of
the election, yielding the message {va},,. She also appends a zero-knowledge proof
Z K P4 that v, is a valid vote, that is v4 = 0 or v4 = 1. This is to avoid that Alice picks
a wrong voting option. We will see later why it is important. Then Alice simply sends
her ballot {v4},r, ZK P4 to the ballot box. Since the ballot box is public, she can check
that her ballot is present on the ballot box, among other ballots as illustrated above.
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Ballot Box
Alice {UA}pk,ZKPA
Bob {’UB}pk7ZKPB
Charlie {Uc}pk, ZKPC

The encryption scheme used in Helios is El Gamal. The tally phase makes use of the
homomorphic property of El Gamal: The multiplication of the encryption of the votes
yields the encryption of the sum of the votes.

H{Ui}pk = {Z Vi }pk
i=1 i=1

We can observe here why voters must prove that they vote either 0 or 1. If they could
submit an arbitrary message, they could modify arbitrarily the result by sending the
encryption of k where k is a positive integer if they wish to increase the score and £ is
a negative integer if they wish to decrease the score.

Once {>_"", v;}pr is computed (which can be performed by anyone), the decryption
authorities simply need to decrypt this single message, which preserves voter’s pri-
vacy: the link between ballots and votes is never leaked. The authorities also provide
a (zero-knowledge) proof of correct tabulation. Helios is therefore verifiable: any voter
can check that his ballot belongs to the ballot box and everyone can check that the
result has been correctly computed.

Helios is actually not fully private as it is subject to ballot-copying [Cortier and
Smyth 2011]. A voter can copy a ballot on the board and send it as his own ballot. For
simplicity, let’s consider an election with three voters, Alice, Bob, and Charlie where
Charlie is a dishonest voter. Assume that Alice and Bob have already voted.

Ballot Box
Alice {'L)A}pk, ZKPA
Bob {UB}pk,ZKPB

Then Charlie can simply copy Alice’s ballot {va},., ZK P4 and send it to the ballot
box, pretending it is his ballot.

Ballot Box
Alice {UA}pk; ZKPA
Bob {UB}pk,ZKPB
Charlie {UA}pka ZKPA

The tally reveals the result of the election r = 2v4 + vp. Charlie can then easily
deduce Alice’s vote: if » < 1 then v4 = 0 otherwise vy4 = 1.

This attack can be fixed by weeding or rejected duplicated ballots. [Bernhard et al.
2012] rigorously shows that this is indeed sufficient.

3. SECURITY ANALYSIS

As for more traditional security protocols, the design of e-voting protocols is difficult
and error-prone. These systems need a precise modelling and a rigorous analysis. The
first task consists in formally defining security properties.

3.1. Properties

For vote privacy, we need to express that an adversary does not learn how a voter voted.
However, a voting system does leak some information since the final result depends on
the votes. For example, in the extreme case of unanimity, there is no privacy left. One
common way of defining vote privacy is to require that an adversary cannot distinguish
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from the scenario where Alice is voting v; and Bob is voting v, from the converse
scenario where Alice is voting v and Bob is voting v;:

Voter(A, v1) | Voter(B, v2) ~ Voter(A,vs) | Voter(B, v1)

This property has been formalized in symbolic models [Delaune et al. 2009], where
primitives are abstracted by terms, as well as in cryptographic models. Cryptographic
models offer three main types of definitions

— Game-based definitions. Game-based definitions are usually convenient for prov-
ing security since they are well tailored to proof by reduction to security assumptions
(such as integer factorisation). The cryptographic counter-part of the privacy defini-
tion stated above has been proposed in [Benaloh and Yung 1986]. This definition does
not capture all the information an attacker can get. For example, in the case of an
approval voting, it may be the case that an attacker may distinguish when Alice is
voting 0 and Bob is voting 2 from the scenario where both Alice and Bob are voting 1.
Therefore several more general game-based definitions of privacy have been recently
proposed (eg [Kiisters et al. 2010; Bernhard et al. 2011; Bernhard et al. 2012; Chase
et al. 2013; Cuvelier et al. 2013; Bernhard and Smyth 2013]). Surprisingly, game-
based definitions are difficult to get right, which explains the number of definitions.

— Entropy-based definitions. Another approach intends to capture all kind of infor-
mation leaked by a voting protocol. This is the case of entropy-based privacy defi-
nitions [Coney et al. 2005; Bernhard et al. 2012]. These definitions capture several
sources of privacy leakage: leakage from the protocol itself but also from the votes
distribution, or the result function: telling only the name of the elected candidate is
clearly less leaky than providing the entire set of votes. Entropy-based notions are
therefore powerful but also much harder to prove.

— Ideal functionality. Finally, privacy can be defined through an ideal voting system
(also called ideal functionality) and proving that the actual voting system does not
provide anymore information than its ideal version [Groth 2004].

As explained earlier, vote privacy is actually a weak form of privacy. For elec-
tions with important issues, voting schemes should be receipt-free or even coercion-
resistant: an adversary should not be able to detect when a voter under coercion still
votes for the candidate of his choice instead of voting as indicated by the coercer. In
symbolic models, receipt-freeness as well as coercion-resistance can also be expressed
through equivalence properties [Delaune et al. 2009; Backes et al. 2008]. Intuitively,
these definitions state that an adversary should not be able to distinguish between the
case where the voter votes exactly as requested by the coercer from the case where
the voter uses a strategy to vote as he wishes, possibly revoting when he is not under
coercion anymore.

Surprisingly, verifiability has deserved less attention than privacy. Individual, uni-
versal, and eligibility verifiability have been defined in symbolic models [Kremer et al.
2010]. This work also shows how these definitions depend on each other. Cryptographic
models usually define verifiability in a more global way such as in [Juels et al. 2010;
Cortier et al. 2013] where it is simply stated that the result should include at least the
votes of all honest voters.

3.2. Formal analysis

Once the desired properties are defined, a first approach is to prove security by
hand. This has been done for the Helios protocol for example, both in symbolic mod-
els [Cortier and Smyth 2013] and in cryptographic ones [Bernhard et al. 2011; Bern-
hard et al. 2012]. However, these proofs are rather long and difficult to check. We
therefore focus here on how to automate, at least partially, security proofs of e-voting
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protocols. Proofs in computational models are difficult to automate. In contrast, sev-
eral mature tools exist for the symbolic analysis of security protocols. For example,
ProVerif [Blanchet 2005; Blanchet et al. 2005], Scyther [Cremers 2008], as well as
Avispa [Armando et al. 2005] have been successfully applied to many protocols of the
literature, including widely deployed ones such as TLS [Bhargavan et al. 2008] or
Single-Sign-On [Armando et al. 2008]. However, these tools do not apply well to e-
voting systems.

A first reason lies in the properties that need to be analysed. Standard security prop-
erties such as authentication or confidentiality are expressed as trace properties: for
any execution trace of the protocol, the secret data a« remains inaccessible (confiden-
tiality); or for any execution trace, whenever Alice finishes a session supposedly with
Bob then Bob has indeed initiated a session with Alice (authentication). Many vari-
ants can be defined as trace properties. In contrast, privacy properties are stated as
indistinguishability properties, formally expressed through behavioural equivalence
properties (e.g. observational equivalence, trace equivalence, or may-testing equiva-
lence [Abadi and Gordon 1997]). Only the ProVerif tool can handle such equivalence
properties. It actually proves a stronger notion, called diff-equivalence [Blanchet et al.
2005], that is unfortunately too strong when applied to voting protocols. The ProSwap-
per tool [Smyth ] may help ProVerifin some cases. Note that equivalence properties are
not only useful in the context of e-voting, they are also used for other privacy properties
such as untraceability [Brusé et al. 2010] or anonymity [Cheval et al. 2013; Arapinis
et al. 2014]. Therefore, some prototypes tools dedicated to equivalence have been re-
cently developed: AKISS [Chadha et al. 2012], APTE [Cheval 2014], and SPEC [Daw-
son and Tiu 2010].

However, all these tools and techniques face a second challenge: e-voting systems
make a wide use of not so standard cryptographic primitives. For example, the FOO
protocol [Fujioka et al. 1992] relies on blind signatures: voters have their blinded bal-
lots signed by the registration authority and then remove the blinding factor. This
property can be formalised as follows [Delaune et al. 2009]:

unblind(sign(blind(z, z),v), z) = sign(z,y)

This equation is already out of reach of the APTE and SPEC but this protocol can
actually by analysed by Akiss [Chadha et al. 2012]. Consider now the Helios protocol
presented earlier: combining encrypted votes yields the encryption of the sum of the
votes. This can be reflected by the following equation

enc(pk; v1) * enc(pk; vy) = enc(pk; v1 + v2)

where * and + are associative and commutative (AC) operators. AC operators are cur-
rently out of reach of any existing tool for analysing security protocols. Things get even
worse with the Norwegian protocol that uses an ad-hoc construction. In this protocol,
voters encrypt their votes with public key pk(a;) using ElGamal encryption. The ballot
box then re-encrypts a blinded version of the ballot with a secret key as such that the
receipt generator can now decrypt the ballot with a3 = a; + a2, without having access
to the vote. This is reflected by the following symbolic equations [Cortier and Wiedling
2012]:

renc(enc('rplain» Trand, Pk(Isk)), ysk:) = enc(xplaina Trand, Pk(fﬂsk + y‘;k))

dec(blind(enc(xplain7 LTrand, Pk($sk)), mblind)7 xsk) = blind(xplainv xblind)

Coming up with resolution procedures that handle such complex equational theories
is a challenging research goal. In particular, we need new techniques for handling AC
operators, larger theories, and for combining theories.
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Challenges

In the previous section, we have already discussed two main challenges: to evaluate
e-voting systems, formal analysis techniques have to cope with both equivalence prop-
erties and complex equational theories. No automatic prover can do both for the mo-
ment.

It will be probably difficult if not impossible to get decidability results for both
equivalence properties and wide classes of equivalence properties. One way to cir-
cumvent decidability issues is to design good over-approximations. Defining over-
approximations is somewhat easy in the case of trace-based properties: if a protocol
P is “simplified” into P’ then the security of P’ implies the security of P as soon as
the execution traces of P’ include all execution traces of P. Typical approximations
consist in removing nonce freshness (the same nonce may be generated twice) or pro-
viding more knowledge to the attacker. However, this reasoning no longer works in the
case of equivalence properties. If P is simplified into P’ and @ into @', the equivalence
P’ ~ @' does not imply P ~ Q. It is therefore necessary to design new approximations,
sound w.r.t. equivalence properties. One approach could be to use type systems [Barthe
et al. 2014], which proved successful to handle indistinguishability properties as well
as a relatively large class of cryptographic schemes.

Surprisingly, privacy has deserved much more attention than verifiability, both in
terms of definitions and analysis, while both properties are equally desirable and im-
portant for e-voting systems. One explanation is that verifiability seems easier to de-
fine. Yet, it remains to formally define verifiability and check the definition against
most existing protocols. From a verification point of view, a second step is to study
how to automate verifiability analysis. Verifiability can be classified as a trace-based
property, for which many techniques exist. However, verifiability requires to count:
“the result contains exactly once each vote of honest voters, plus at most k& dishonest
votes”, where k is the number of corrupted voters, that is the number of voters under
the control of the attacker. It is unclear how existing tools can cope with verifiability.

Finally, e-voting systems also question the security models that are usually con-
sidered for protocols. In particular, it is not always realistic to trust the computer’s
voters since it may host worms for example. To control the computer voter’s behaviour,
some e-voting systems make use of external devices (e.g. secure tokens as in banking
applications), code sheets, or out-of-band channels (e.g. SMS). Of course, the cost of
each of these techniques differ and corresponding precise security models still need
to be defined. The threat scenario also differs depending on the election. A challeng-
ing question is how to define a voting systems, or a family of voting systems, that can
(provably) cope with each threat scenario.
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SEMANTICS COLUMN

MICHAEL MISLOVE, Tulane University

mwm@math.tulane.edu

One of the goals of this column is to highlight breakthroughs so the semantics com-
munity can follow them as they unfold. This quarter’s column concerns just such a
breakthrough — the amazing relationship between algebraic topology, a mainstay of
mathematics, and type theory, a fundamental component of logic and computer sci-
ence, that has emerged through Voevodsky’s univalent foundation for mathematics.
Working out the details of this connection was the subject of a recent year-long pro-
gram at IAS that produced the HoTT book referenced in the column itself.

On the mathematical side, there is homotopy theory. Given maps f,¢9: X — Y be-
tween topological spaces X and Y, a homotopy from f to g is a mapping F: X x[0,1] - Y
satisfying F(—,0) = f and F(—,1) = g. The spaces X and Y are then homotopic if there
are maps ¢: X — Y and ¢: Y — X so that the compositions in either order are homo-
topic to the appropriate identity map.

On the logical side, there is type theory. Originally devised by Russell as a way to
avoid paradoxes like the one that bears his name, Church also used a simple type
hierarchy to avoid the Kleene-Rosser paradox, and gave us the simply-typed lambda
calculus.

These two seemingly disparate areas were brought together by Voevodsky’s univa-
lent foundations for mathematics, or, as is pointed out in the column itself, Voevodsky’s
work “clinched the connection” that was already emerging in work by others.

Every undergraduate mathematics major learns about homotopy theory when the
fundamental group of a space is introduced: In the case of a path-connected space X,
it is the set of homotopy equivalence classes of maps f:S' — X from the circle to
X. This construction is due to Poincaré [2], and was first applied in the study of Rie-

mann surfaces. Cech [1] generalized this construction to the family of homotopy groups
T (X),n > 1 of a space X. m1(X) is the fundamental group, and 7,,(X) is the family of
maps from the n-sphere S" to X. This family of abelian groups reflects structural prop-
erties of the space. Because homeomorphic spaces have isomorphic homotopy groups,
the groups can tell when two spaces are not homeomorphic. For example, X is con-
tractible if 71 (X) is the one-point group, so R" is contractible, while the n-sphere S" is
not.

Even though they appear in the foundations of mathematics, most mathematics stu-
dents would not have encountered types or type theory — the Zermelo-Frankel Axioms
make no mention of them. While the von Neumann hierarchy, which accounts for all
ZF-sets because of the Foundation Axiom, is a type hierarchy, it is usually called the
cumulative hierarchy, with no mention of type theory at all.
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Of course, computer science students encounter types in their courses on program-
ming languages, where they play a crucial role. And the seminal work of Dana Scott on
Church’s un(i)typed lambda calculus gave us domain theory, which is a fundamental
tool for semantics.

Proof assistants have been under development for many years, with applications
to a wide range of areas. The use of proof assistants to devise constructive proofs of
mathematical results has opened the door to many unexpected results, one of which is
the recent work on homotopy type theory.

Clearly then, there is ample reason for the semantics column to include an account
of the recent developments relating homotopy theory, type theory and constructive
mathematics. Steve Awodey and Bob Harper, two of the researchers who are push-
ing these developments forward, offer us their insights into how this relationship was
discovered, and what might lie ahead.
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Homotopy Type Theory: Unified Foundations of Mathematics and
Computation!

Steve Awodey Robert Harper
Carnegie Mellon University Carnegie Mellon University

Homotopy type theory is a recently-developed unification of previously disparate
frameworks, which can serve to advance the project of formalizing and mechanizing
mathematics. One framework is based on a computational conception of the type of
a construction, the other is based on a homotopical conception of the homotopy type
of a space. The computational notion of type has its origins in Brouwer’s program
of intuitionism, and Church’s A-calculus, both of which sought to ground mathemat-
ics in computation (one would say “algorithm” these days). The homotopical notion
comes from Grothendieck’s late conception of homotopy types of spaces as represented
by oco-groupoids [Grothendieck 1983]. The computational perspective was developed
most fully by Per Martin-Lof, leading in particular to his Intuitionistic Theory of
Types [Martin-Lof and Sambin 1984], on which the formal system of homotopy type
theory is based. The connection to homotopy theory was first hinted at in the groupoid
interpretation of Hofmann and Streicher [Hofmann and Streicher 1994; 1995].2 It was
then made explicit by several researchers, roughly simultaneously.? The connection
was clinched by Voevodsky’s introduction of the univalence axiom, which is motivated
by the homotopical interpretation, and which relates type equality to homotopy equiv-
alence [Kapulkin et al. 2012; Awodey et al. 2013].

Constructive foundations are often regarded as incompatible with classical mathe-
matics. By contrast, the framework of homotopy type theory is fully compatible with
classical mathematics, and indeed allows for a classical conception of proposition, as
well as a conception of set that is compatible with such principles as the axiom of

IThanks to Daniel Grayson, Michael Mislove, and Vladimir Voevodsky for helpful comments on an earlier
draft. Of course, the authors alone are still responsible for any errors or misstatements.

2The importance of equality of elements of a type in constructive mathematics was also emphasized by
Bishop [Bishop and Bridges 1985]. Quotient types, which were introduced in NuPRL as a further develop-
ment of Bishop’s and Martin-Lof’s ideas [Constable, et al. 1985], may be seen as a particular case of this
connection.

3 Awodey and Warren [Awodey and Warren 2009] showed that the basic system of Martin-Lof type theory can
be interpreted in a Quillen model category (an abstract framework for doing homotopy theory); Lumsdaine
[Lumsdaine 2009] and van den Berg and Garner [van den Berg and Garner 2011] showed that every type in
the system has the structure of an w-category (a structure closely related to that of an co-groupoid); Gambino
and Garner [Gambino and Garner 2008] showed that the type theory itself supports a weak factorization
system (the basic building block of a Quillen model structure); and both Streicher [Streicher 2006] and
Voevodsky [Voevodsky 2006] proposed interpretations into the category of simplicial sets, using ideas from
homotopy theory.
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choice. The key to achieving this unification is to avoid postulating generally certain
reasoning principles, such as the decidability of every type, although these may still be
postulated “locally”, for example the decidability of every proposition. It is notable that
these same reasoning principles are also those that are usually avoided in constructive
foundations, opening the door to the unification of the constructive (computational)
and homotopic (spatial) interpretations of types, the implications of which are only just
beginning to be understood. Moreover, by not insisting on these principles globally, it
is possible to consider a far richer notion of type than has previously been considered
in the computational approach, namely one in which types are abstract spaces that
may have non-trivial higher-dimensional structure, like the n-spheres for all n > 0. In
conventional foundations, such as axiomatic set theory, these objects are presented as
structured sets representing certain conceptions of space, such as topological spaces.
Here, instead, such higher-dimensional objects arise “synthetically” in much the way
that lines and triangles in Euclid’s geometry are primitive abstract objects, rather than
being comprised of analytic point-sets. This provides a new perspective on some famil-
iar constructions in homotopy theory, such as the homotopy groups of a space [Univa-
lent Foundations Program 2013; Licata and Shulman 2013; Licata and Brunerie 2013]
and the construction of so-called Eilenberg-MacLane spaces [Licata and Finster 2014],
with specified homotopy groups. Moreover, new proofs of some standard results have
a distinctively “logical” flavor, in combination with more “geometric” and “topological”
elements.

What is it that makes this new unification possible? Although it may be too early
to formulate a single, deep unifying principle, it is possible to make a few observa-
tions that will give the reader a sense of its inevitability. First, all of the construc-
tions of Intuitionistic Type Theory, including especially the identity type, are homo-
topy invariant, in the sense that type families and mappings between types inher-
ently respect identifications (paths, homotopies, or deformations). Moreover, the for-
mation of indexed products and sums of types, which correspond to analogous con-
structions on spaces, respect the homotopically motivated notion of equivelence of
types,corresponding to the homotopy equivalence of spaces. This invariance essen-
tially follows from the basic fact that Martin-Lof’s ingenious concept of the identity
type corresponds to the path space of a space, and since everything in the formal sys-
tem respects identity, everything in the interpretation respects homotopy, which is
determined by identfication along paths. Second, a characteristic feature of both intu-
itionistic type theory and homotopy theory is an emphasis on structure over property.
Under the propositions-as-types conception of intuitionistic logic,* types express propo-
sitions, and objects of the type are proofs of those propositions in the form of mathe-
matical constructions that provide evidence for their truth. A similar emphasis can be
discerned in abstract homotopy theory, in which, e.g., paths (homotopies) may be seen
as evidence for the “identification” of two points, and similarly for paths between the
corresponding values of two functions. Two points are not merely “equal”, as a prop-
erty, but rather are identified by a (not necessarily unique) deformation, construction,
or procedure. This approach extends to higher dimensions, in that one may speak of
the identifications of two (parallel) identifications, at all higher dimensions. Such a
structure of a hierarchy of identifications via path connectedness is found in standard
settings for homotopy theory such as simplicial sets, cubical sets, and globular sets, all
of which stress the role of cells as identifications.

We thus already see an analogy between the constructively motivated concept of
proof relevance, in which proofs are mathematical objects classified by a type, and the
homotopically motivated distinction between structure and property. An important ad-

1See, e.g., [Howard 1980] for its original formulation.
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vantage resulting from proof relevance is that it naturally supports a comprehensive
approach to mechanized mathematics in which computer systems, such as Coq [Coq ]
and Agda [Agda ], can be used to verify the correctness of mathematical arguments, of
either a classical, set-theoretic form, or a constructive, type-theoretic form. In either
case the proof of a theorem constitutes a formal mathematical object whose validity
can be independently checked, avoiding the need to rely on the correctness of the proof
checker itself. Once a proof has been obtained, others can not only check its formal
correctness by the usual means, but can also submit the proof to another checker, to
ensure that it is valid according to the rules of homotopy type theory. This approach to
verification is fundamentally the same as that proposed by de Bruijn in the Automath
system [Automath ], albeit applied to a language with richer foundational commit-
ments than were required there. It should be contrasted with the approach of systems
such as NuPRL [NuPRL ] or HOL [HOL ; HOL-Light ], that rely on a small trusted
code base to ensure the validity of proofs.

The idea of identifications of points in a space along a continuous path, and of higher
identifications of paths as homotopies, etc., leads to Voevodsky’s conception of a hier-
archy of homotopy levels, or h-levels for short, which is definable within type theory.
Whereas the usual hierarchy of size is determined by type universes or large cardinals
in type theory or set theory, the hierarchy of h-levels is based instead on the internal
structure of types. Roughly speaking, the lowest level consists of the types that have
at most one element, up to path-connectedness; these are called propositions, and they
correspond to the (empty or) contractible spaces. The next level, called sets, consists
of those types whose identity types are themselves propositions — two elements of a
set are “equal in at most one way”. After that come the types whose identity types
are sets; these are the groupoids. And so on, with the types at level n + 1 being those
whose identity types have level n, for all n > 0. Just the recognition that this hierarchy
of h-levels is present in the system of all types has been a huge advance in our under-
standing of type theory; previously, it was simply a mystery that some types were fully
determined by their elements, while others seemed to behave as though they had some
further structure. The construction of quotient types, for example, is now greatly sim-
plified when one knows that the equivalence relation being factored out is a family of
propositions, and not of “higher-dimensional” types. For another example, for types A
and B that are propositions, the relevant notion of equivalence is logical equivalence,
represented by the type A <> B. For sets, the relevant notion is isomorphism A = B,
and for groupoids, there is the notion of (categorical) equivalence A ~ B. Each of these
concepts results by specializing the single, uniform notion of equivalence of types A ~ B
(also due to Voevodsky) to the respective cases of propositions, sets, and groupoids.

In this setting, Voevodsky’s univalence axiom can be stated as the assertion that the
type A ~ B of all equivalences between two types A and B is itself equivalent to their
identity type,

(A~ B) ~ Id(A, B). (UA)

Thus in particular, logically equivalent propositions will be identified, as in the orig-
inal, extensional type theory of Church [Church 1940]. Isomorphic sets, too, will be
identified “up to homotopy”, i.e., by paths between them in the universe of all types,
and similarly for equivalent groupoids, and equivalent types in general. Note that this
stipulation also serves to specify the otherwise underdetermined identity type Id (A, B).

This is not really the place for a systematic introduction (for that, see [Univalent
Foundations Program 2013]), but a brief example may serve to convey a bit of the
flavor of the new approach, especially the distinctive intermingling of logical and ho-
motopical ideas. As is the case in conventional Martin-Lof type theory, the basic types
of booleans B and natural numbers N can have at most one identification between any
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two elements; that is, given say n,m : N and p, ¢ : ldy(n,m) in the identity type of n
and m, we always have some a : Id(ig, (n,m)) (P, ¢) identifying p and ¢. In this sense, there
is no real information in the type ldy(n, m), apart from whether or not it is inhabited.
Such types with at most one identification between any two elements are called “sets”.
Any types that can be constructed from B, N, or any other sets, by means of the usual
type constructors of dependent sum . 4 B(z) and dependent product IT,. 4 B(x) (which
include A x B and A — B as special cases) are also sets, and the same is true for the
identity types Id4(a, a’) for a,a’ : A, for any set A.

An example of a type that is not a set is the circle (or “l-sphere”) S!, which has a
base point b : S* and a generating loop p : Idg:(b,b). There are then many different
self-identifications, which may be labelled

refl(b), p, p - p, ... : ldg1 (b, b).

Here refl(b) is the trivial identification, i.e., the canonical witness to the reflexivity of
identity. There is also the identification p, which is different from refl(b) in the sense
that Id (141 (b’b))(reﬂ(b), p) is empty. We can think of p homotopically as the continuous

“path” that goes once around the circle.
By the (function witnessing the) transitivity of equality,

(=) (=) :1dgi(a,b) x Idg1 (b, c) — ldg1 (a, c),
there are also the “paths” p-p, p-p - p, .... And by symmetry,
(—)71 : |d51 (CL, b) — |dsl (b, Cl)7

there are similarly the paths p=!, p=! - p=!,... : Idg: (b, b). Although S* is therefore not
a set, it can be shown that Idg: (b, b) is one; that is, the types Id(lds1 (b.1)) (z,y) are either

inhabited (by reflexivities) or empty, depending on whether or not = = y, for all =,y :
Ids:(b,b). Indeed, one can show that Idg:(b,b) = Z, i.e., the fundamental group of the
type S' is the integers, as it should be (see [Licata and Shulman 2013] for the details).
The proof of this uses the univalence axiom, together with the specification of S! as a
new kind of higher inductive type, generalizing the usual inductive specification of the
natural numbers and similar structures. For S*, the inductive specification essentially
says that S! is “the type freely generated by the base point b : S' and the loop p :
Ids:(b,0)”, in the same sense that the usual inductive specification of N says that it is
the type freely generated by 0 : N and the successor function s : N— N.

Another type that is not a set is the universe U/ of all (small) types. According to the
Univalence Axiom, identifications between types A, B : U correspond to equivalences
A ~ B, which as we said above are generalized type isomorphisms. In fact, as already
stated, if A and B themselves are sets, then an equivalence between them is just an
isomorphism in the usual sense: a pair of maps back and forth that compose to the
respective identity mapppings. Now the booleans B, for example, have two different
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isomorphisms B = B, namely the identity and the operation of “negation” - : B— B,
which swaps the truth values 0,1 : B. Thus by univalence there are two distinct iden-
tifications in Idy, (B, B), corresponding to these distinct isomorphisms, and so I/ is not a
set, but a “higher-dimensional” type, like S*.

Now observe that by the basic recursive property of S' as “the type freely generated
by a point with a loop on it”, there is a map

rec(B,n) : S' —U,

determined by sending the base point b : S* to the booleans B : I/ and the generating
loop p : Idg:(b,b) to (the loop corresponding under univalence to) negation, say n :
Id;/(B,B). As a type of the form S* — 1/, this rec(B, n) is thus a family of types over S*,
sometimes called a “dependent type” and written

x: S rec(B,n)(z).

Homotopically, such a type-family is interpreted as a “fibration” E — S!, where the
total space F is just the sum type X,.51 rec(B, n)(x), equipped with its usual indexing
projection. In the present case, the “fiber” is then the type rec(B,n)(b) = B, and the
action on (elements of) B induced by the path n : Ids:(b,b) in the base is exactly the
operation of negation — : B—B. Thus, from a homotopical point of view, we have con-
structed the “twisted double cover” of the circle (see Figure 2). This construction from
homotopy theory is closely related to the celebrated Hopf fibration which, among other
things, can be used to compute some of the higher homotopy groups of the spheres 5>
and S2. Indeed, one can construct the Hopf fibration in homotopy type theory in much
the same way as the foregoing example, using univalence, negation, winding around
the circle, and other constructions derived from combinations of logical, type-theoretic,
and homotopical ideas (see [Univalent Foundations Program 2013], £8.5).

We can now say in a bit more detail how the univalent framework of homotopy type
theory subsumes and extends the classical, set-theoretic framework for doing mathe-
matics, by making use of the hierarchy of h-levels, which includes sets within a broader
framework of homotopy types. At the bottom level, the propositions (the types having
at most one element, up to higher identification) correspond to conventional, proof-
irrelevant propositions; whether we also assert the law of excluded middle in the form
that every such proposition is either inhabited or empty is a further, consistent as-
sumption that may be made if classical logic is desired. Next, the sets (for which equal-
ity is a proposition that is taken to be “self-evident” or “proof-irrelevant”) correspond
to the usual sets, but now without any commitment to choice principles, or whether
membership is a boolean proposition. Those further principles can still be consistently
taken as axioms if needed, but they are not required, even with the introduction of in-
finite sets such as the type of natural numbers. Voevodsky’s new insight, which plays
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such an important role in homotopy type theory, is that, besides the familiar concepts
of proposition (classically formalized in predicate calculus) and set (classically given
by the Zermelo-Fraenkel axioms), there is an infinite hierarchy of further dimensions
extending beyond just these two. The groupoids (the next h-level above the sets), such
as our example S!, are the natural setting for systems of set-theoretic structures, such
as groups and rings, that one may wish to regard as identified up to isomorphism.
Because two groups, say, can be isomorphic in many different ways, however, the ev-
idence for an identification is not a trivial proposition, but consists in the mutually
inverse pair of homomorpisms, i.e., the isomorphism, that warrant it. Here we see
explicitly how proof-relevance (from constructivism) and the “property-structure” dis-
tinction (from homotopy theory) coincide.

In this way we can now distinguish, within Martin-Lof type theory, an infinite hier-
archy of different “homotopical dimensions” that were not fully recognized previously,
despite such models as Hofmann and Streicher’s two-dimensional groupoid interpre-
tation [Hofmann and Streicher 1994] that strongly hinted at the importance of higher
dimensions of structure. Type theory was, of course, originally conceived as a foun-
dation for constructive mathematics, in which all constructions, including proofs of
propositions, have direct computational meaning in accordance with Brouwer’s origi-
nal program. This fundamental connection with computation has proved enormously
influential in computer science, in particular in the theory of programming languages
and the foundations of mechanized proof. Homotopy type theory makes essential use
of the concept of proof relevance, which is so central to the constructive program, and
emphasizes a notion of abstract types that is familiar from the theory of programming
languages (e.g., the identity type is itself an abstraction, rather than being encoded in
terms of a concrete definition of homotopy). The grand challenge as of this writing is to
extend the computational interpretation to the univalence axiom, and therewith to the
full hierarchy of h-levels, providing a computational meaning for, say, mappings among
higher-dimensional structures such as the spheres and toruses of arbitrary dimension.
Recent advances, such as the landmark development of a constructively valid model
using cubical sets [Bezem et al. 2014], strongly suggest that such a unification will be
achieved in the near future. The potential implications for computer science are only
beginning to be explored [Angiuli et al. 2014].

Perhaps the most important application of the unification of classical and construc-
tive mathematics is the possibility of applying systems of mechanized proof verification
to broad swaths of classical mathematics that were previously formalizable only via
elaborate coding into set theory, and only in systems based on classical logic, which
generally lack the benefits resulting from the computational interpretation of con-
structive systems (e.g., the generation of independently verifiable proof certificates).
The direct formalization of everything from quotient sets to cohomology simplifies and
streamlines the formalization of even advanced mathematics, and has the potential to
eventually make formal verification into a practical tool for the everyday mathemati-
cian. Interestingly, this practical development makes the logical foundations of math-
ematics finally relevant to the actual practice of mathematics, rather than being just
a theoretical possibility. The result may be a new “post-Godel” attitude toward founda-
tions; for when their only interest was theoretical, the phenomenon of incompleteness
seemed to lessen the importance of logical foundations in principle. But with the ac-
tual practical benefits of formalization (increased rigor and certainty, ease of remote
collaboration, accumulation of results), the theoretical incompleteness phenomenon di-
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minishes in importance, and logical foundations can become a useful addition to the
toolbox of the working mathematician.?

It is a curious fact, made all the more interesting by the above-mentioned develop-
ments, that two of the most successful systems for mechanized proof, NuPRL [Con-
stable, et al. 1985] and Coq [Coq ], are both based on constructive type theory. Why
ought that be the case? Homotopy type theory may provide a clue in the importance
of proof-relevance, and the associated distinction between property and structure, in
both constructive mathematics and homotopy theory. The univalent approach of ho-
motopy type theory exploits the axiomatic freedom provided by constructive mathe-
matics, allowing it to rely far less on elaborate encodings which impede the process
of formalization required to admit machine-checked proof. This experience parallels
the development of high-level (abstract) programming languages that provide a syn-
thetic concept of computation, rather than one based on low-level machine models
such as the Turing machine or Random-Access Machine. Thus we find that whether
we are discussing mechanized mathematical proof or verified computer programming,
Church’s A-calculus emerges as a central concept. Perhaps this explains why construc-
tive mathematics and mechanized proof are so tightly linked. That they should also be
entwined with homotopy theory — one of the most abstract, geometrical, and rarified
areas of modern mathematics — is an intriguing and challenging fact inviting further
investigation.
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VERIFICATION COLUMN
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A commonly used definition of verification is that it consists of techniques that for-
mally prove a particular system is correct with respect to certain properties. Given the
complexity of modern day systems such verification techniques are not decidable for
most systems and often intractable for others. However, verification is much more than
proving a system is a correct with respect to a property. In my opinion, verification en-
compasses a large set of activities associated with establishing confidence about the
expected behaviors of the system in some specified environment. Building this con-
fidence is key to having reliable and trustworthy systems. Our modern world over-
ridden with technology includes not only traditional hardware and software systems,
but, other emerging technologies, such as web-applications, hand-held mobile devices,
wearable technologies such as smart watches, self-driving cars, unmanned aerial vehi-
cles commonly known as drones, and many others. Insufficient verification effort can
have varying degrees of impact ranging from a bad user-experience to financial losses,
disruption of services, and in some extreme cases loss of human lives. An important
challenge in order to push forth the verification effort is to recognize, develop, and bet-
ter utilize activities that are grounded in logic and other computation models and can
enable us to build confidence about the correctness of the system rather than prove its
correctness.

In this column I hope to present innovations in various verification techniques based
on model checking, symbolic evaluation, theorem proving, and others. I would like to
have articles on activities that may not typically be labeled as verification but are
widely used in industry and government organizations to build confidence about the
correctness of the system. Another important aspect I hope to bring forth in this col-
umn is the application of verification techniques in other domains such biological sys-
tems, multi-agent systems, financial markets, and others. If you would like to con-
tribute to this column please write to me. I very much look forward to hearing from
our readers on ideas, suggestions, and feedback to help shape this column.
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1. INTRODUCTION

Methodology and tools for assisting developers in building high-confidence hardware
and software at a reasonable cost has been one of the central themes in computer sci-
ence since its inception. The formal methods research on this problem has focused on
two complimentary goals: to provide mathematical abstractions to manage the com-
plexity of the design and to develop analysis tools to check that the implementation
works correctly as intended. Achieving these goals has proved to be extremely chal-
lenging for two reasons. First, the scale and complexity of systems being designed
remains a moving target as computers have transformed from special-purpose and
stand-alone number-crunching processors to networked devices interacting with the
physical world. Second, once formalized, the computational problem of verifying that
a system meets its specification is undecidable in the general case and has intractable
complexity even in special cases.

Advances in theoretical foundations for system design have contributed in address-
ing these challenges partially by identifying logics and automata for specification and
modeling, and by developing efficient data structures and algorithms for analysis. In
Section 2, we discuss real-world impact of these advances in design automation for
hardware, software, and embedded control systems. Critical to each success story was
an initial demonstration of a compelling match between the capability of a research
prototype and an industrial need, followed by sustained research on improving the
scalability of the tools. It is worth noting that research on this topic has been recog-
nized by multiple notable awards in the last twenty years. These include: A.M. Tur-
ing Award to Pnueli for temporal logic in 1996 and to Clarke, Emerson, and Sifakis
for model checking in 2007, Paris Kanellakis Theory and Practice Award to Bryant,
Clarke, Emerson, and McMillan for symbolic model checking in 1998, to Holzmannn,
Kurshan, Vardi, and Wolper for automata-theoretic model checking in 2005, and to
Brayton for logic synthesis in 2006, and ACM Software System Award to the model
checker SPIN in 2001, to the Boyer-Moore theorem prover in 2005, and to Statemate
in 2007.
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2. SUCCESS STORIES

In this section, we describe a few illustrative examples of how ideas originating in
academic research and rooted in theoretical foundations have matured into tools and
methodologies used in industry and other communities.

2.1. Constraint Solvers

The propositional satisfiability problem (SAT) is known to be NP-complete and un-
derstanding its structure has been a central theme in complexity theory for the past
forty years. A parallel thread of research in the verification community has been the
development of efficient solvers for SAT. Modern SAT solvers are capable of solving
instances with many thousands of variables due to sustained innovations in core algo-
rithms, data structures, decision heuristics, and performance tuning by exploiting the
architecture of contemporary processors [12].

A more challenging form of constraint satisfaction problem is to determine the truth of
a logical formula built from propositional as well as other types of variables. For exam-
ple, in linear real arithmetic, the input formula consists of propositional and real vari-
ables, logical connectives, and linear arithmetic operations. Theoretical understanding
of general ways of combining distinct decision procedures (in case of linear real arith-
metic, integrating the solver for propositional satisfiability with the solver for checking
consistency of conjunctions of linear inequalities) has paved the way for the so-called
SMT (Satisfiability Modulo Theories) solvers that can now solve constraint satisfaction
problems over a rich set of types.

Contemporary analysis and verification tools vary widely in terms of source languages,
verification methodology, and the degree of automation, but they all rely on repeatedly
invoking a SAT or an SMT solver for core computational tasks such as checking valid-
ity of a verification condition and automatically generating a candidate invariant (see
[3] for an introduction to decision procedures and program verification). Due to their
impressive scalability and maturity, SAT and SMT solvers are also used in many other
contexts such as planning and optimization (see [7] and smt-1ib.org).

2.2. Hardware Design Automation

The key to managing the complexity of modern VLSI circuits has been the introduction
of industry-standard abstractions such as RTL (Register Transfer Level) and Hard-
ware Description Languages (such as Verilog and VHDL). The challenge in electronic
design automation then is to automatically map descriptions in such high-level ab-
stractions to a low-level circuit for fabrication while ensuring semantic correctness
and satisfying performance objectives related to area, power, and timing.

The significant advances in electronic design automation have originated in academic
tools. Prominent examples include: (1) SPICE for accurate and fast simulation of large-
scale circuits, (2) SIS for translating state machines to optimized netlists, and (3)
Espresso for minimizing the number of gates in a circuit. These tools rely on a vari-
ety of algorithmic techniques such as algebraic rewriting, heuristics for multiobjective
optimization, efficient techniques for simulation of differential equations, and equiva-
lence checking for finite-state machines.

The work on circuit simulation and logic synthesis in 1980s resulted in founding of
Cadence and Synopsis, which are still the two leading companies in EDA (Electronic
Design Automation). More significantly, EDA tools are used universally within the
semiconductor industry, and the contemporary computing infrastructure would not
exist without these advances in hardware design automation (see [13] for a survey of
the synergy between the academic research and EDA industry).
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2.3. Temporal Logic Model Checking

Temporal logic offers a natural way of formally expressing requirements concerning
safety (avoidance of undesirable states) and liveness (eventual satisfaction of goals)
properties of reactive systems—systems that interact with their environment via in-
puts and outputs in an ongoing manner. Model checking, introduced in early 1980s,
is the problem of algorithmically checking that a finite-state abstraction of a system
satisfies its temporal-logic specification.

Model checking has been a topic of extensive theoretical research for the past thirty
years. Key theoretical advances include symbolic algorithms based on the data struc-
ture of BDDs (binary decision diagrams), an understanding of the expressiveness and
complexity of different variants of temporal logics, automata over infinite strings with
applications to decision procedures for temporal logics, reduction strategies for limit-
ing the search through the state-space of concurrent state-machines, and techniques
for automatic abstraction and refinement. Early research prototypes such as Cospan,
Murphi, SMV, and SPIN demonstrated how these theoretical ideas can lead to effi-
cient tools, and were successful in finding hard-to-find logical bugs in multiprocessor
coordination protocols and distributed algorithms.

In hardware design, it is now a common practice to augment the design with asser-
tions or monitors as correctness specifications. The specification language PSL (IEEE
1850 Standard Property Specification Language) is rooted in temporal logic, and sup-
ported by commercial simulation tools (see also the emerging standard SVA (System
Verilog Assertions). Companies such as Intel and Motorola have in-house verification
groups that routinely use model checkers to debug challenging designs such as cache
coherence protocols and pipelined microprocessor architectures. There are also new
companies focused primarily on tools and consulting for formal verification such as
Jasper (jasper-da.com) and Oski (oskitechnology.com).

We refer the reader to [5] for a technical introduction to model checking, and the 2009
ACM Turing Award lecture for an overview of its impact [4].

2.4. Software Analysis

The software verification problem is to check whether a program meets a correctness
specification. While this problem is undecidable, a number of algorithmic analysis
techniques have been developed to solve this problem approximately (in the sense that
the tool is not guaranteed to give the correct answer on every input instance).

In static analysis, a set of facts of a particular pattern relating program variables
are derived at every program location by propagation of constraints along the control-
flow graph of the program. Theoretical research on abstract interpretation, constraint
simplification, and algorithms for inter-procedural analysis has contributed to scal-
able tools such as Astrée (used by Airbus to check absence of floating point errors
in avionics software) [6] and PreFix/PreFast (used by Microsoft to ensure absence of
buffer overflow errors in Windows operating system). Companies such as Grammat-
ech (grammatech.com) and Coverity (coverity.com) originated from academic research,
and have developed industrial-strength static analysis tools [2].

In software model checking, automatic abstraction and static analysis are used to de-
rive a finite-state abstraction of a program, which is then subjected to exhaustive state-
space exploration using symbolic techniques developed for model checking. There have
been prominent successes of this approach recently: the SDV (Static Device Verifier)
tool is able to certify conformance of code for device drivers to the Windows API us-
age rules [1]; the C code running on NASA’s robotic vehicle Curiosity that success-
fully landed on Mars in August 2012 was extensively debugged using formal analysis
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tools [9]; and the F-SOFT model checker is used in NEC on a regular basis to find bugs
in millions of lines of C/C++ code [10].

The objective of software testing is to select a representative set of inputs for executing
the code, and of dynamic analysis is to infer as much information as possible about
the program behavior based on observed executions. For these classical software engi-
neering problems, new algorithmic techniques have been recently developed based on
the use of constraint solvers and symbolic execution. Recently, the testing tool SAGE
based on symbolic execution was credited to have found roughly one third of all the
security vulnerabilities during the development of Microsoft’s Windows 7 software [8].
A promising new direction for software analysis combines constraint-based static ap-
proach with the execution-based dynamic approach.

2.5. Formal Models for Cyber-Physical Systems

Cyber-physical systems are networked computing devices interacting with the phys-
ical world. Model-based design is emerging as a promising approach for developing
this new class of complex systems in a principled manner, and the foundations of this
methodology lie in cross-fertilization of ideas from mathematical modeling and algo-
rithmic analysis.

Examples of modeling frameworks include Statecharts for visual and structured mod-
eling of reactive systems, Esterel for simplifying design abstractions based on syn-
chrony hypothesis, timed automata for integrating timing constraints in state ma-
chines, hybrid automata for integrating discrete behavior with continuous-time mod-
els of dynamical systems, and Ptolemy for unifying heterogenous models of interaction.
Examples of analysis techniques include algorithms for estimation of worst-case exe-
cution time and scheduling of computational resources, synthesis of code from models
subject to resource constraints, transformation and composition of models, verification
algorithms based on computing finite-state abstractions of timed and hybrid systems,
symbolic analysis of dynamical systems, and metric-based notions of abstraction and
refinement for hybrid systems. See [11] for an introduction to model-based design and
analysis of cyber-physical systems.

Model-based design and analysis is slowly being adapted by industry for design
of embedded control software in domains such as avionics, automotive, and medi-
cal devices. Mathworks, the leading tool vendor in this sector (see mathworks.com),
now supports modeling using notations such as Statecharts and hybrid au-
tomata, schedulability analysis, and test-case generation using symbolic techniques
(Simulink Design Verifier). Companies such as TTTech (tttech.com), Reactive Systems
(reactive-systems. com), and Uppaal (uppaal.com) originated from academic research,
and market tools for formal modeling and analysis. It is also worth noting the adop-
tion of concepts and tools from formal methods in disciplines such as control theory
and systems engineering, both in research and undergraduate education.

3. FUTURE DIRECTIONS

Realizing the full potential of emerging computing platforms requires that advances in
processing and communication technology are matched by advances in tools for design-
ing complex software systems and ensuring their safe and reliable operation. Thus,
the research goal of formal approaches to system design and analysis is as relevant
and as challenging today as it was fifty years ago, and the success stories discussed
in the previous section suggest that theory can be effective in this pursuit. Another
lesson is that the path to a successful technology transfer in this domain has been
typically long: small steps in advancing the scalability of tools collectively contribute
towards impressive results over decades. This calls for continued research in core ar-
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eas of formal methods such as identification of analyzable design abstractions, analysis
algorithms, and scalability of tools.

We conclude this report by listing some new avenues for research.

— Synthesis: With maturing of verification technology that can check the confor-
mance of an implementation to its specification, it is natural to focus on synthesis—
automatic derivation of implementation from specifications, both to improve pro-
grammer productivity and to integrate verification with design so that bugs are found
in early stages. There is a growing research on this topic, for instance, on synthesizing
finite-state controllers from temporal logic specifications, on automatic completion of
partial programs based on user-supplied assertions, and synthesis of programs from
examples by exploiting the domain-specific knowledge. New theoretical approaches
that combine logical deduction with machine learning can offer scalable computa-
tional solutions for synthesis.

— Concurrency: While the methodology for design and verification of sequential pro-
grams is well understood, despite many proposals for programming languages and
verification techniques for concurrent programs, developing concurrent systems re-
mains a difficult and error-prone task. Emerging multiprocessor and multicore ar-
chitectures offer enormous computational power, but exploiting this parallelism effi-
ciently and correctly is challenging due to complex memory models for shared data.
The emergence of data-centers and cloud computing again offers exciting opportuni-
ties for concurrent computation, but need new programming abstractions to ensure
data consistency and fault tolerance. Research in formal methods can potentially
have significant impact on programming abstractions and languages for concurrent
systems.

— Probabilistic and Quantitative Models: Traditionally, models and techniques
used for establishing correctness and for evaluating performance have been disjoint.
A promising new direction in formal methods research these days is the development
of probabilistic models, with associated tools for quantitative evaluation of system
performance along with correctness. Concurrent software, distributed protocols, and
resource allocation for cloud computing, are potential application domains for such
work.

— Beyond Worst-Case Complexity: Classical computation theory focuses on estab-
lishing the worst-case complexity of problems. For verification problems, such es-
timates always indicate intractability, and yet, some of the modern SAT and SMT
solvers work well on many instances in this context. Theoretical tools for estimating
complexity on real-world instances of problems thus can provide useful insights into
the structure of these problems.
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CALLS

COMPUTABILITY IN EUROPE 2015: Evolving Computability

Call for Papers

June 29 - July 3, 2015
Bucharest, Romania
http://fmi.unibuc.ro/CiE2015/

GENERAL. CiE 2015 is the 11-th conference organized by CiE (Computability in Eu-
rope), a European association of mathematicians, logicians, computer scientists, phi-
losophers, physicists and others interested in new developments in computability and
their underlying significance for the real world. Evolution of the universe, and us wi-
thin it, invite a parallel evolution in understanding. The CiE agenda - fundamental
and engaged - targets the extracting and developing of computational models basic to
current challenges. From the origins of life, to the understanding of human mentality,
to the characterizing of quantum randomness - computability theoretic questions arise
in many guises. The CiE community, this coming year meeting for the first time in Bu-
charest, carries forward the search for coherence, depth and new thinking across this
rich and vital field of research.

SUBMISSIONS. We are looking for fundamental and theoretical submissions. In line
with other conferences in this series, CiE 2015 has a broad scope and provides a fo-
rum for the discussion of theoretical and practical issues in Computability with an
emphasis on new paradigms of computation and the development of their mathemati-
cal theory. We particularly invite papers that build bridges between different parts of
the research community.

DATES.

— Submission Deadline for LNCS: 11 January 2015
— Notification of authors: 9 March 2015
— Deadline for final revisions: 6 April 2015

For submission instructions consult
http://fmi.unibuc.ro/CiE2015/submission.html

30TH ANNUAL ACMW/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2015)

Call for Papers

July 6-10, 2015

Kyoto, Japan
http://lics.rwth-aachen.de/lics15/
(colocated with ICALP 2015)

AIMS. The LICS Symposium is an annual international forum on theoretical and prac-
tical topics in computer science that relate to logic, broadly construed. We invite sub-
missions on topics that fit under that rubric. Suggested, but not exclusive, topics of
interest include: automata theory, automated deduction, categorical models and lo-
gics, concurrency and distributed computation, constraint programming, constructive
mathematics, database theory, decision procedures, description logics, domain theory,
finite model theory, formal aspects of program analysis, formal methods, foundations
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of computability, higher-order logic, lambda and combinatory calculi, linear logic, logic
in artificial intelligence, logic programming, logical aspects of bioinformatics, logical
aspects of computational complexity, logical aspects of quantum computation, logical
frameworks, logics of programs, modal and temporal logics, model checking, probabili-
stic systems, process calculi, programming language semantics, proof theory, real-time
systems, reasoning about security and privacy, rewriting, type systems and type the-
ory, and verification.

INSTRUCTIONS. Authors are required to submit a paper title and a short abstract of
about 100 words in advance of submitting the extended abstract of the paper. The
exact deadline time on these dates is given by anywhere on earth (AoE).

— Title and Short Abstracts Due: January 12, 2015

— Extended Abstracts Due: January 19, 2015

— Author Feedback/Rebuttal Period: March 12-16, 2015
— Author Notification: March 30, 2015

— Final Versions Due for Proceedings: April 27, 2015

Deadlines are firm; late submissions will not be considered. All submissions will be
electronic via https://www.easychair.org/conferences/?conf=lics2015. Every extended
abstract must be submitted in the IEEE Proceedings 2-column 10pt format and may
not be longer than 12 pages, including references. LaTeX style files are available from
the website.

CONFERENCE CHAIR. Masahito Hasegawa, RIMS, Kyoto U.

PROGRAM COMMITTEE CHAIR. Catuscia Palamidessi, INRIA & E. Polytechnique
WORKSHOP CHAIR. Patricia Bouyer-Decitre, CNRS & ENS Cachan

GENERAL CHAIR. Luke Ong, U. Oxford

SHORT PRESENTATIONS. A session of short presentations, intended for descriptions
of student research, works in progress, and other brief communications, is planned.
These abstracts will not be published. Dates and guidelines will be posted on the con-
ference website.

KLEENE AWARD FOR BEST STUDENT PAPER. An award in honor of the late Stephen C.
Kleene will be given for the best student paper(s), as judged by the program committee.

SPECIAL ISSUES. Full versions of up to three accepted papers, to be selected by the
program committee, will be invited for submission to the Journal of the ACM. Additio-
nal selected papers will be invited to a special issue of Logical Methods in Computer
Science.

SPONSORSHIP. The symposium is sponsored by ACM SIGLOG and the IEEE Technical
Committee on Mathematical Foundations of Computing, in cooperation with the As-
sociation for Symbolic Logic and the European Association for Theoretical Computer
Science.

2ND INTERNATIONAL COMPETITION ON RUNTIME VERIFICATION (CRV 2015)

Call for Participation

September 22-25, 2015

Vienna, Austria
http://rv2015.conf.tuwien.ac.at
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AIMS. CRV-2015 will draw attention to the invaluable effort of software developers and
researchers who contribute in this field by providing the community with new or upda-
ted tools, libraries and frameworks for the instrumentation and runtime verification of
software. The main goal of CRV 2015 is to compare tools for runtime verification. We
invite and encourage the participation with benchmarks and tools for the competition.

TRACKS. The competition will consist of three main tracks based on the input language
used:

— Track on monitoring Java programs (online monitoring).
— Track on monitoring C programs (online monitoring).
— Track on monitoring of traces (offline monitoring).

The competition will follow three phases:

— Benchmarks/Specification collection phase - the participants are invited to submit
their benchmarks (C or Java programs and/or traces). The organizers will collect
them in a common repository (publicly available). The participants will then train
their tools using the shared benchmarks.

— Monitor collection phase - the participants are invited to submit their monitors. The
participants with the tools/monitors that meet the qualification requirements will be
qualified for the evaluation phase.

— Evaluation phase - the qualified tools will be evaluated on the submitted benchmarks
and they will be ranked using different criteria (i.e., memory utilization, CPU utili-
zation, ...). The final results will be presented at the RV 2015 conference.

ENQUIRIES. Please direct any enquiries to the competition co-organizers
(crv1l5.chairs@imag.fr)

— Ylies Falcone (Universite Joseph Fourier, France)

— Dejan Nickovic (AIT Austrian Institute of Technology GmbH, Austria)
— Giles Reger (University of Manchester, UK)

— Daniel Thoma (University of Luebeck, Germany)

CRV-2015 Jury. The CSRV Jury will include a representative for each participating team
and the competition chairs. The Jury will be consulted at each stage of the competition
to ensure that the rules set by the competition chairs are fair and reasonable.

IMPORTANT DATES.

— January 15, 2015: Declaration of intent (email: crvl5.chairs@imag.fr)

— March 1, 2015 Submission deadline for benchmark programs and the properties to
be monitored

— March 15, 2015 Tool training starts by participants

— May 15, 2015 Monitor submission

—dJune 15, 2015 Notifications

— At RV 2015 Presentation of results

4TH ANNUAL MEETING OF THE REASONING CLUB MEETING

http://wuw.kent.ac.uk/secl/philosophy/jw/reasoning/club/
http://www.maths.manchester.ac.uk/news-and-events/events/fourth-reasoning-club-conf/
School of Mathematics, Manchester University

March 30th-31st, 2015
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TALKS. The Keynote Speakers are Richard Booth (Luxembourg), Leon Horsten (Bri-
stol), Federico Luzzi (Aberdeen) and Sara Uckelman (Durham). In addition it is plan-
ned to have ten 40 minute contributed talks by Ph.D.students and early Postdocs, for
whom grants will be available to cover the cost of accommodation and subsistence.

SUBMISSIONS. If you would like to give a talk please attach a short abstract when re-
turning your registration form. The deadline for abstracts is 15th January 2015. Ple-
ase see http://www.maths.manchester.ac.uk/news-and-events/events/fourth-reasoning-
club-conf/ for information on abstract submission and (free) registration.

ORGANIZERS. Jeff Paris & Alena Vencovska

27TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED VERIFICATION (CAV 2015)

Call for Papers and CAV Award
July 18-24 2015

San Francisco, California
http://i-cav.org/2015/

AIMS AND SCOPE. CAV 2015 is the 27th in a series dedicated to the advancement of
the theory and practice of computer-aided formal analysis methods for hardware and
software systems. CAV considers it vital to continue spurring advances in hardware
and software verification while expanding to new domains such as biological systems
and computer security. The conference covers the spectrum from theoretical results to
concrete applications, with an emphasis on practical verification tools and the algori-
thms and techniques that are needed for their implementation. The proceedings of the
conference will be published in the Springer LNCS series. A selection of papers will be
invited to a special issue of Formal Methods in System Design and the Journal of the
ACM.

TOPICS. Topics of interest include but are not limited to:

— Algorithms and tools for verifying models and implementations

— Hardware verification techniques

— Deductive, compositional, and abstraction techniques for verification
— Program analysis and software verification

— Verification methods for parallel and concurrent hardware/software systems
— Testing and run-time analysis based on verification technology

— Applications and case studies in verification

— Decision procedures and solvers for verification

— Mathematical and logical foundations of practical verification tools
— Verification in industrial practice

— Algorithms and tools for system synthesis

— Hybrid systems and embedded systems verification

— Verification techniques for security

— Formal models and methods for biological systems

DEADLINES.

— Abstract submission: January 30, 2015

— Paper submission (firm): February 6, 2015

— Author feedback/rebuttal period: March 23-26, 2015
— Notification of acceptance/rejection: April 17, 2015
— Final version due: May 1, 2015
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CALL FOR CAV AWARD NOMINATIONS. The CAV award is given annually at the CAV con-
ference for fundamental contributions to the field of Computer-Aided Verification. The
award comes with a cash prize of $10,000 shared equally among recipients. Nomina-
tions should be submitted by e-mail to a member of the CAV Award committee.

PC CHAIRS. Daniel Kroening, University of Oxford, UK. Corina Pasareanu, Carnegie
Mellon Silicon Valley/NASA Ames, USA.

WORKSHOP CHAIR. Dirk Beyer, University of Passau, Germany

LOCAL ORGANIZATION CHAIR. Temesghen Kahsai, Carnegie Mellon Silicon Val-
ley/NASA Ames, USA.

CAV AWARD COMMITTEE. Moshe Vardi (Chair), Rice University; Ahmed Bouajjani,
Univ. Paris Diderot (Paris 7); Tom Ball , Microsoft Research; Kim G. Larsen, Aalborg
University

TTL 2015 - 4th INT'L CONF ON TOOLS FOR TEACHING LOGIC

Call for Papers
June 9-12, 2015, Rennes, France
http://tt12015.irisa.fr/

TOPICS. Topics that fit the interests of Tools for Teaching Logic include (but are not
limited to): teaching logic in sciences and humanities; teaching logic at different le-
vels of instruction (secondary education, university level, and postgraduate); didactic
software; facing some difficulties concerning what to teach; international postgradu-
ate programs; resources and challenges for e-Learning Logic; teaching Argumentation
Theory, Critical Thinking and Informal Logic; teaching specific topics, such as Modal
Logic, Algebraic Logic, Knowledge Representation, Model Theory, Philosophy of Lo-
gic, and others; dissemination of logic courseware and logic textbooks; teaching Logic
Thinking.

IMPORTANT DATES.

— Paper submission: 30 Jan 2015;
— Notification: 1 Mar 2015;
— Final camera-ready due: 29 Mar 2015

CONTINUITY, COMPUTABILITY, CONSTRUCTIVITY: FROM LOGIC TO ALGORITHMS 2014
POSTPROCEEDINGS

Call for Submissions

GENERAL. After a further year of successful work in the EU-IRSES project COMPU-
TAL and an excellent workshop in Ljubljana (Slovenia) in September this year, we are
planning to publish a collection of papers dedicated to the meeting and the project in
the JOURNAL OF LOGIC AND ANALYSIS. The issue should reflect progress made
in Computable Analysis and related areas, not only work in the project. Submissions
are welcome from all scientists and should be on topics in the spectrum from logic to
algorithms including, but not limited to,

— Computable analysis

— Complexity of real number computations
— Computing with continuous data

— Domain theory and analysis
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— Randomness and computable measure theory
— Models of computation with real numbers

— Realizability theory and analysis

— Reverse analysis

— Exact real number computation

— Program extraction in analysis

EDITORS. Andrej Bauer (Ljubljana, Slovenia) Ulrich Berger (Swansea, UK) Willem
Fouche (Pretoria, South Africa) Dieter Spreen (Siegen, Germany & Pretoria, South
Africa) Hideki Tsuiki (Kyoto, Japan) Martin Ziegler (Darmstadt, Germany)

DEADLINE FOR SUBMISSION. 31 January 2015 Please prepare your manuscript using
the JLA class file jlogana.cls and the bibliography style file jloganal.bst which can be
downloaded from http:/logicandanalysis.org/latex/latexinstructions.html. For submis-
sions go to the JLA webpage
http://logicandanalysis.org/index.php/jla/information/authors

and follow the instructions given there. In addition, important, When submitting to
JLA, write CCC2014 POSTPROCEEDINGS in the Comments-for-the-Editor box. Send
a separate copy of your submission to spreen@math.uni-siegen.de. And, if appropriate,
identify one or more members of the Issue Editors mentioned above whose interests
are closest to the subject matter of the paper in the mail.

23RD GOEDEL PRIZE

Call for Nominations
http://www.sigact.org/Prizes/Godel/

CONTEXT. The Goedel Prize for outstanding papers in the area of theoretical compu-
ter science is sponsored jointly by the European Association for Theoretical Compu-
ter Science (EATCS) and the Association for Computing Machinery, Special Interest
Group on Algorithms and Computation Theory (ACM SIGACT). The award is pre-
sented annually, with the presentation taking place alternately at the International
Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Sym-
posium on Theory of Computing (STOC). The 23rd Goedel Prize will be awarded at
the 47th ACM Symposium on Theory of Computing, June, 2015 in Portland, Oregon.
The Prize is named in honor of Kurt Goedel in recognition of his major contributions
to mathematical logic and of his interest, discovered in a letter he wrote to John von
Neumann shortly before von Neumann’s death, in what has become the famous "P
versus NP”question. The Prize includes an award of USD 5000.

AWARD COMMITEE. The winner of the Prize is selected by a committee of six mem-
bers. The EATCS President and the SIGACT Chair each appoint three members to
the committee, to serve staggered three-year terms. The committee is chaired alterna-
tely by representatives of EATCS and SIGACT. The 2015 Award Committee consists
of Krzysztof Apt (CWI Amsterdam), Kurt Mehlhorn (Max Planck Institute), Joseph
Mitchell (State University of New York at Stony Brook), Andrew Pitts (University of
Cambridge), Madhu Sudan (Microsoft) and Eva Tardos (Cornell University).

ELIGIBILITY. The rules for the 2015 Prize are given below and they supersede any dif-
ferent interpretation of the generic rule to be found on websites of both SIGACT and
EATCS. Any research paper or series of papers by a single author or by a team of au-
thors is deemed eligible if (i) the paper was published in a recognized refereed journal
no later than December 31, 2014; (ii) the main results were not published (in either
preliminary or final form) in a journal or conference proceedings before January 1st,
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2002. The research work nominated for the award should be in the area of theoretical
computer science. The term ‘theoretical computer science’ is meant to encompass, but
is not restricted to, research areas covered by ICALP and STOC. Nominations are en-
couraged from the broadest spectrum of the theoretical computer science community
so as to ensure that potential award winning papers are not overlooked. The Award
Committee shall have the ultimate authority to decide whether a particular paper is
eligible for the Prize.

NOMINATIONS. Nominations for the award should be submitted by email to the Award
Committee Chair Eva Tardos: eva.tardos@cornell.edu. Please make sure that the Sub-
ject line of all nominations and related messages begin with Goedel Prize 2015. To be
considered, nominations for the 2015 Prize must be received by January 31, 2015.

MORE DETAILS. http://www.sigact.org/Prizes/Godel/

ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for
Embedded Systems (LCTES 2015)

Call for Papers

June 18-19, 2015

Portland, Oregon

(part of the Federated Computing Research Conference 2015)
http://lctes2015.1lctes.org

GENERAL. LCTES provides a link between the programming languages and embed-
ded systems engineering communities. Researchers and developers in these areas are
addressing many similar problems, but with different backgrounds and approaches.
LCTES is intended to expose researchers and developers from either area to relevant
work and interesting problems in the other area and provide a forum where they can
interact.

SUBMISSIONS. LCTES 2015 solicits papers presenting original work on programming
languages, compilers, tools, theory, and architectures that help in overcoming these
challenges. Research papers on innovative techniques are welcome, as well as expe-
rience papers on insights obtained by experimenting with real-world systems and ap-
plications.

IMPORTANT DATES.

— Submission deadline: Feb. 15
— Notifications by: Apr. 1
— Camera-ready deadline: Apr. 11

SPECIAL ISSUE. A few of the best submissions to LCTES 2015 are planned to be invited
for submission, with some revisions, to a special issue of the ACM Transactions on
Embedded Computing Systems (TECS). The official publication date is the date the
proceedings are made available in the ACM Digital Library. This date may be up to
two weeks prior to the first day of your conference.

ORGANIZATION

— General Chair: Sam H. Noh, Hongik University, Republic of Korea
— Program Chairs: Sebastian Fischmesiter, University of Waterloo, Canada Jason Xue,
City University of Hong Kong, China
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CONFERENCE ON INTELLIGENT COMPUTER MATHEMATICS (CICM 2015)

Call for Papers

13-17 July 2015

Washington DC, USA
http://cicm-conference.org/2015/cicm. php

AIMS. Digital and computational solutions are becoming the prevalent means for the
generation, communication, processing, storage and curation of mathematical infor-
mation. Separate communities have developed to investigate and build computer ba-
sed systems for computer algebra, automated deduction, and mathematical publishing
as well as novel user interfaces. While all of these systems excel in their own right,
their integration can lead to synergies offering significant added value. The Confe-
rence on Intelligent Computer Mathematics (CICM) offers a venue for discussing and
developing solutions to the great challenges posed by the integration of these diverse
areas.

HISTORY. CICM has been held annually as a joint meeting since 2008, co-locating rela-
ted conferences and workshops to advance work in these subjects. Previous meetings
have been held in Birmingham (UK 2008), Grand Bend (Canada 2009), Paris (France
2010), Bertinoro (Italy 2011), Bremen (Germany 2012), Bath (UK 2013), and Coimbra
(Portugal 2014).

TRACKS.

— Calculemus (Symbolic Computation and Mechanised Reasoning), Chair: Jacques Ca-
rette

— DML (Digital Mathematical Libraries), Chair: Volker Sorge

— MKM (Mathematical Knowledge Management), Chair: Cezary Kaliszyk

— Systems and Data Chair: Florian Rabe

ORGANIZATION. Publicity chair is Serge Autexier. The local arrangements will be co-
ordinated by the Local Arrangements Chairs, Bruce R. Miller (National Institute of
Standards and Technology, USA) and Abdou Youssef (The George Washington Univer-
sity, Washington, D.C.), and the overall programme will be organized by the General
Programme Chair, Manfred Kerber (U. Birmingham, UK). As in previous years, it is
anticipated that there will be a number co-located workshops, including one to men-
tor doctoral students giving presentations. We also solicit for project descriptions and
work-in-progress papers.

IMPORTANT DATES.

— Conference submissions:
— Abstract submission deadline: 16 February 2015
— Submission deadline: 23 February 2015
— Reviews sent to authors: 6 April 2015
— Rebuttals due: 9 April 2015
— Notification of acceptance: 13 April 2015
— Camera ready copies due: 27 April 2015
— Conference: 13-17 July 2015
— Work-in-progress and Doctoral Programme submissions:
— Submission deadline: (Doctoral: Abstract+CV) 4 May 2015
— Notification of acceptance: 25 May 2015
— Camera ready copies due: 1 June 2015
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42ND INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING
(ICALP 2015)

Call for Papers

July 6-10, 2015

Kyoto, Japan
http://www.kurims.kyoto-u.ac.jp/icalp2015/

GENERAL. ICALP 2015 will co-locate with LICS 2015, the 30th ACM/IEEE Symposium
on Logic in Computer Science. The ICALP 2015 conference chair is Kazuo Iwama (Ky-
oto University). ICALP is the main conference and annual meeting of the European
Association for Theoretical Computer Science (EATCS). As usual, the main conference
will be preceded and/or followed by a series of workshops.

IMPORTANT DATES.

— Submission deadline: Tuesday, 17 February 2015, 23:59 PST (Pacific Standard Time,
UTC-8)

— Author notification: 15 April 2015

— Final manuscript due: 30 April 2015

Deadlines are firm; late submissions will not be considered.

PROCEEDINGS. ICALP proceedings are published in the Springer-Verlag ARCoSS (Ad-
vanced Research in Computing and Software Science) subseries of LNCS (Lecture No-
tes in Computer Science).

INVITED SPEAKERS. Ken Kawarabayashi, NII, Japan; Valerie King, University of Vic-
toria, Canada; Thomas Moscibroda, MSR Asia, China; Anca Muscholl, Universite Bor-
deaux, France (Joint with LICS); Peter O’'Hearn, Facebook, UK (Joint with LICS)

INVITED TUTORIAL SPEAKERS (JOINT WITH LICS). Piotr Indyk, MIT, USA; Andrew Pitts,
University of Cambridge, UK; Geoffrey Smith, Florida International University, USA

MASTERCLASS SPEAKER. Ryuhei Uehara, JAIST, Japan

TOPICS. Papers presenting original research on all aspects of theoretical computer
science are sought.

— Track A: Algorithms, Complexity and Games

— Track B: Logic, Semantics, Automata and Theory of Programming

— Track C: Foundations of Networked Computation: Models, Algorithms and Informa-
tion Management

SUBMISSION GUIDELINES. Authors are invited to submit an extended abstract of
no more than 12 pages, including references, in LNCS style presenting origi-
nal research on the theory of Computer Science. All submissions will be electro-
nic via the EasyChair page for the conference, with three tracks (A, B and C):
https://easychair.org/conferences/?conf=icalp2015 Submissions should be made to the
appropriate track of the conference. No prior publication or simultaneous submission
to other publication outlets (either a conference or a journal) is allowed.

BEST PAPER AWARDS. As in previous editions of ICALP, there will be best paper and
best student paper awards for each track of the conference. In order to be eligible for a
best student paper award, a paper should be authored only by students and should be
marked as such upon submission.
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CHAIRS.

— Track A: Bettina Speckmann, TU Eindhoven, The Netherlands
— Track B: Naoki Kobayashi, The University of Tokyo, Japan
— Track C: Magnus M. Halldorsson, Reykjavik Univ, Iceland

JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Call for Papers
Special Issue on Automated Verification of Programs and Web Systems

SPECIAL ISSUE. This special issue of the Journal of Logical and Algebraic Methods
in Programming (JLAMP) is devoted to the themes of the WWV and VPT workshop
series on Automated Specification and Verification of Web Systems (WWYV) and on Ve-
rification and Program Transformation (VPT). This is however an open call for papers.
Both participants of the most recent editions of the WWV and VPT workshop series
and others working on the themes of this special issue are hereby invited to submit a
paper.

IMPORTANT DATES.

— Abstract submission: 25 February 2015
— Full paper submission: 15 March 2015
— Acceptance notification: 30 June 2015
— Final manuscript due: 25 July 2015

— Expected publication: Fall 2015

AIMS AND SCOPE. This special issue provides a forum for researchers working in the
areas of verification, program transformation, software engineering, rule-based pro-
gramming, formal methods, and Web-oriented research, to submit their papers on the
Automated Verification of Programs and Web Systems. We solicit original papers on
topics of either theoretical or applied interest.

SUBMISSION. We expect original articles (typically 20-30 pages; submission of lar-
ger papers will be evaluated depending on editorial constraints) that present high-
quality contributions, which have not previously been published and that are
also not simultaneously submitted for publication elsewhere. Each paper will un-
dergo a thorough evaluation by at least three reviewers. All contributions must
be written in English, must be submitted in PDF format and must comply with
JLAMP’s author instructions (the manuscripts should be prepared using Else-
vier’s elsart.cls LaTeX article class) which can be retrieved from the journal’s ho-
mepage: http:/www.journals.elsevier.com/journal-of-logical-and-algebraic-methods-in-
programming/ Submissions are handled using the Elsevier Editorial System and can
be uploaded via the aforementioned JLAMP homepage. In the submission process, the
authors must select article type “WWVPT”.

GUEST EDITORS. Maurice H. ter Beek, ISTI-CNR, Pisa, Italy; Alexei Lisitsa, University
of Liverpool, UK; Andrei P. Nemytykh, Russian Academy of Sciences, Russia; Antonio
Ravara, Universidade Nova de Lisboa, Portugal

ACTA INFORMATICA: SPECIAL ISSUE ON SYNTHESIS

Call for Papers
http://www.easychair.org/smart-program/VSL2014/SYNT-cfp_specialissue.html
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SCOPE. This special issue is devoted to the scope of the Third Workshop on Synthe-
sis, SYNT 2014 (see http://vsl2014.at/synt). SYNT 2014 was co-located with CAV in
the scope of the Vienna Summer of Logic 2014 and was devoted to bringing together
researchers from different research areas who work on the quickly growing field of
synthesis. The special issue is open to all topics related to synthesis.

SUBMISSIONS. Submission to this special issue is completely open and not limited to
participants of the SYNT 2014 workshop. We expect original articles (typically 15-30
pages), which present high-quality contributions that have not been previously publi-
shed in a journal and are not concurrently submitted to any other peer reviewed venue.
All submissions should include some theoretical contribution to the area of synthesis.
Extended versions of contributions previously published in proceedings need to con-
tain significant new material and should be accompanied by a short description of the
extension.

DATES. Submissions are accepted starting in January 2015, using the “Submit Online”
button of the journal’s website:

http://www.springer.com/computer/theoretical+computer+science/journal/236
Submission deadline: 1st of March 2015

TOPOLOGY, ALGEBRA, AND CATEGORIES IN LOGIC (TACL 2015)

Call for Participation

School: 15 - 19 June 2015, University of Salerno (Italy)
Conference: 21 - 26 June 2015, Ischia Island (Italy)
http://logica.dmi.unisa.it/tacl/

PROGRAMME. The programme of the conference TACL 2015 will focus on three in-
terconnecting mathematical themes central to the semantic study of logics and their
applications: algebraic, categorical, and topological methods. This is the seventh con-
ference in the series Topology, Algebra, and Categories in Logic (TACL). Earlier in-
stalments of this conference have been organised in Thbilisi (2003), Barcelona (2005),
Oxford (2007), Amsterdam (2009), Marseilles (2011), and Nashville (2013). Starting
from 2013, the conference is preceded by a one-week school. This year the school will
be held at the campus of the University of Salerno and will include four tutorials, each
consisting of 1.5 hour lectures for five days.

IMPORTANT DATES. The website is now open for submissions and registration.

— Deadline for submissions 1 March 2015

— Notification of acceptance 30 March 2015

— Deadline for early registration (conference) 30 April 2015

— Deadline for registration (school) 30 April 2015

— School dates: 15 - 19 June 2015, University of Salerno (Italy)
— Conference dates: 21 - 26 June 2015, Ischia Island (Italy)

INVITED SPEAKERS. Olivia Caramello (Institut des Hautes Etudes Scientifiques),
Agata Ciabattoni (Technische Universitaet Wien), Maria Manuel Clementino (Univer-
sidade de Coimbra), Emil Jerabek (Academy of Sciences of the Czech Republic), Andre
Joyal (Universite du Quebec), Keith A. Kearnes (University of Colorado), Daniele Mun-
dici (University of Florence), Paulo Oliva (Queen Mary University of London), Jorge
Picado (Universidade de Coimbra), Michael Pinsker (University Paris Diderot)
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SCHOOL LECTURERS. Guram Bezhanishvili (New Mexico State University), Brian Da-
vey (La Trobe University), Ieke Moerdijk (Nijmegen University), Luke Ong (Oxford
University)

THE 11TH INTERNATIONAL TBILISI SYMPOSIUM ON LANGUAGE, LOGIC AND
COMPUTATION

Call for Papers

21-26 September 2015

Thilisi, Georgia
http://www.illc.uva.nl/Tbilisi/Tbilisi2015

AIMS. The Eleventh International Thbilisi Symposium on Language, Logic and Com-
putation will be held on 21-26 September 2015 in Thilisi, Georgia. The Programme
Committee invites submissions for contributions on all aspects of language, logic and
computation. Work of an interdisciplinary nature is particularly welcome. Areas of
interest include, but are not limited to:

— Algorithmic game theory

— Computational social choice

— Constructive, modal and algebraic logic

— Formal models of multiagent systems

— Historical linguistics, history of logic

— Information retrieval, query answer systems

— Language evolution and learnability

— Linguistic typology and semantic universals

— Logic, games, and formal pragmatics

— Logics for artificial intelligence

— Natural language syntax, semantics, and pragmatics

— Natural logic, inference and entailment in natural language
— Distributional and probabilistic models of information and meaning

SUBMISSIONS. Authors can submit an abstract of three pages (including references) at
the EasyChair conference system here:
http://www.easychair.org/conferences/?conf=tbillc2015

PROGRAMME. The programme will include the following invited lectures and tutorials.

— Tutorials
— Logic: Brunella Gerla (University of Insubria)
— Language: Lisa Matthewson (University of British Columbia)
— Computation: Joel Ouaknine (Oxford University)
— Invited Lectures
— Rajesh Bhatt (University of Massachusetts )
— Melvin Fitting (Graduate School and University Center of New York)
— Helle Hansen (Delft University of Technology)
— George Metcalfe (Bern University)
— Sarah Murray (Cornell University)
— Mehrnoosh Sadrzadeh (Queen Mary, University of London)

WORKSHOPS. There will also be a workshop on Automata and Coalgebra, organised by
Helle Hansen and Alexandra Silva and a workshop on “How to make things happen in
grammar: Encoding Obligatoriness”, organised by Rajesh Bhatt and Vincent Homer.
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CHAIRS. Daniel Altshuler (Chair, Heinrich-Heine-University Duesseldorf); Luca Spada
(Chair, ILLC, University of Amsterdam and University of Salerno)

PUBLICATION INFORMATION. Post-proceedings of the symposium will be published in
the LNCS series of Springer.

IMPORTANT DATES.

— Submission deadline: 1 March 2015
— Notification: 1 May 2015

— Final abstracts due: 1 June 2015

— Registration deadline: 1 August 2015
— Symposium: September 21-26, 2015

COMPUTER SCIENCE LOGIC 2015 (CSL 2015)

Call for Papers

7-10 September 2015

Berlin, Germany
http://logic.las.tu-berlin.de/cs12015/

AIM AND SCOPE. Computer Science Logic (CSL) is the annual conference of the Eu-
ropean Association for Computer Science Logic (EACSL). The conference is intended
for computer scientists whose research activities involve logic, as well as for logicians
working on issues significant for computer science.

LOCATION. The 24th EACSL Annual Conference on Computer Science Logic will be
held at the Technical University Berlin from Monday, 7 September 2015 to Thurday,
10 September 2015.

LIST OF TOPICS OF INTEREST (NON EXHAUSTIVE).

- automated deduction and interactive theorem proving
- constructive mathematics and type theory

- equational logic and term rewriting

-automata and games, game semantics

-modal and temporal logic

-model checking

- decision procedures

-logical aspects of computational complexity

- finite model theory

- computational proof theory

-bounded arithmetic and propositional proof complexity
- logic programming and constraints

-lambda calculus and combinatory logic

- domain theory

- categorical logic and topological semantics

- database theory

- specification, extraction and transformation of programs
-logical aspects of quantum computing

- logical foundations of programming paradigms

- verification and program analysis

- linear logic

- higher-order logic

-nonmonotonic reasoning
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IMPORTANT DATES.

— Abstract submission: 3 April 2015
— Paper Submission: 10 April 2015
— Paper Notification: 13 June 2015
— Conference: 7 - 10 September 2015

SUBMISSION. Authors are invited to submit papers of not more than 15 pages in LIPIcs
style presenting work not previously published. Papers are to be submitted through
Easychair. Submitted papers must be in English and must provide sufficient detail to
allow the PC to assess the merits of the paper. Full proofs may appear in a technical
appendix which will be read at the reviewers’ discretion. Authors are strongly enco-
uraged to include a well written introduction which is directed at all members of the
program committee.

SATELLITE EVENTS.

— The 11th International Workshop on Fixed Points in Computer Science (FICS’15) will
be held on 11 and 12 September 2015 as a co-located event of CSL15.

— YuriFest: we will celebrate Yuri Gurevichs 75th birthday with a symposium in his
honour on 11 September 2015 as a co-located event of CSL15.

— The annual meeting of the GI Fachgruppe Logik will be organised at the Technical
University Berlin in conjunction with CSL'15.

PC CHAIR. Stephan Kreutzer (Technical University Berlin)
ORGANISING COMMITTEE.

- Christoph Dittmann (Technical University Berlin)

- Viktor Engelmann (Technical University Berlin)

- Stephan Kreutzer (Technical University Berlin, Chair)
- Jana Pilz (Technical University Berlin)

- Roman Rabinovich (Technical University Berlin)

- Sebastian Siebertz (Technical University Berlin)

MATHEMATICAL FOUNDATIONS OF PROGRAMMING SEMANTICS XXXI (MFPS 2015)

Call for Papers
22-25 June 2015, Nijmegen, Netherlands
http://events.cs.bham.ac.uk/mfps31/

MFPS SERIES. MFPS conferences are dedicated to the areas of mathematics, logic, and
computer science that are related to models of computation in general, and to seman-
tics of programming languages in particular. This is a forum where researchers in
mathematics and computer science can meet and exchange ideas. The participation of
researchers in neighbouring areas is strongly encouraged. This edition of MFPS will
be co-located with CALCO.

IMPORTANT DATES.

— Submission: April 3, 2015
— Notification: May 15, 2015
— Final version: May 29, 2015

INVITED SPEAKERS. Andrew Pitts, Thierry Coquand, Paul B. Levy, Guy McCusker, Sam
Staton
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INVITED TUTORIAL SPEAKERS. Matija Pretnar, Andrzej Murawski, Martin Escardo

SPECIAL SESSIONS. algebraic effects, game semantics, homotopy type theory, quanti-
tative semantics

MORE INFO. For more information please consult the web page.

13TH INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING AND NON-MONOTONIC
REASONING (LPNMR 2015)

Preliminary Call for Papers

Lexington, KY, USA

September 27-30, 2015

http://1lpnmr2015.mat.unical.it/

(Collocated with the 4th Conference on Algorithmic Decision Theory 2015)

AIMS AND SCOPE. LPNMR 2015 is the thirteenth in the series of international me-
etings on logic programming and non-monotonic reasoning. LPNMR is a forum for
exchanging ideas on declarative logic programming, non-monotonic reasoning, and
knowledge representation. The aim of the conference is to facilitate interactions be-
tween researchers and practitioners interested in the design and implementation
of logic-based programming languages and database systems, and those working in
knowledge representation and nonmonotonic reasoning. LPNMR strives to encompass
theoretical and experimental studies that have led or will lead to the construction of
systems for declarative programming and knowledge representation, as well as their
use in practical applications. This edition of LPNMR will feature several workshops, a
special session dedicated to the 6th ASP Systems Competition, and will be collocated
with the 4th Algorithmic Decision Theory Conference, ADT 2015. Joint LPNMR-ADT
Doctoral Consortium will be a part of the program. Authors are invited to submit pa-
pers presenting original and unpublished research on all aspects of non-monotonic ap-
proaches in logic programming and knowledge representation. We invite submissions
of both long and short papers.

TOPICS. Conference topics include, but are not limited to:

(1) Foundations of LPNMR Systems
(2) Implementation of LPNMR systems
(3) Applications of LPNMR

SUBMISSION. LPNMR 2015 welcomes submissions of long papers (13 pages) or short
papers (6 pages) in the following categories:

— Technical papers
— System descriptions
— Application descriptions

The indicated number of pages includes title page, references and figures. All sub-
missions will be peer-reviewed and accepted papers will appear in the conference
proceedings published in the Springer-Verlag Lecture Notes in Artificial Intelligence
(LNAI/LNCS) series. At least one author of each accepted paper is expected to register
for the conference to present the work. The Program Committee chairs are planning
to arrange for the best papers to be published in a special issue of a premiere journal
in the field. LPNMR 2015 will not accept any paper which, at the time of submission,
is under review or has already been published or accepted for publication in a journal
or another conference. Authors are also required not to submit their papers elsewhere

ACM SIGLOG News 66 January 2015, Vol. 2, No. 1



during LPNMR’s review period. However, these restrictions do not apply to previous
workshops with a limited audience and without archival proceedings.

ASSOCIATED WORKSHOPS. LPNMR 2015 will include specialized workshops to be held
on September 27 prior to the main conference. Currently planned workshops include:

— Grounding, Transforming, and Modularizing Theories with Variables;
Organizers: Marc Denecker, Tomi Janhunen
— Action Languages, Process Modeling, and Policy Reasoning;
Organizer: Joohyung Lee
— Natural Language Processing and Automated Reasoning;
Organizers: Marcello Balduccini, Ekaterina Ovchinnikova, Peter Schueller
— Learning and Nonmonotonic Reasoning;
Organizers: Alessandra Russo and Alessandra Mileo

IMPORTANT DATES (TENTATIVE).

— Paper registration: April 13, 2015
— Paper submission: April 20, 2015
— Notification: June 1, 2015

— Final versions due: June 15, 2015

VENUE. Lexington is a medium size, pleasant and quiet university town. It is located
in the heart of the so-called Bluegrass Region in Central Kentucky. The city is surro-
unded by beautiful horse farms on green pastures dotted with ponds and traditional
architecture stables, and small race tracks, and bordered by white or black fences. The
Horse Museum is as beautifully located as it is interesting. Overall, the city has a nice
feel that mixes well old and new. The conference will be held in the Hilton Lexington
Downtown hotel.

GENERAL CHAIR. Victor Marek, University of Kentucky, KY, USA

PROGRAM CHAIRS. Giovambattista Ianni, University of Calabria, Italy; Mirek Trusz-
czynski, University of Kentucky, KY, USA

WORKSHOPS CHAIR. Yuliya Lierler, University of Nebraska at Omaha, NE, USA
PUBLICITY CHAIR. Francesco Calimeri, University of Calabria, Italy
CONTACT. lpnmr2015@mat.unical.it

31ST INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING (ICLP 2015)

Call for Papers
Cork, Ireland

August 31 - September 4, 2015
http://booleconferences.ucc.ie/iclp2015

HISTORY. Since the first conference held in Marseilles in 1982, ICLP has been the
premier international conference for presenting research in logic programming. ICLP
2015 will be co-located with the 21st International Conference on Principles and Prac-
tice of Constraint Programming (CP 2015) and is part of "The Year of George Boole”, a
celebration of the life and work of George Boole who was born in 1815 and worked at
the University College of Cork.
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IMPORTANT DATES.

— Abstracts due: April 20, 2015

— Papers due: April 27, 2015

— Notification to authors: June 5, 2015

— Camera ready versions due: July 21, 2015
— Conference: August 31-September 4, 2015

CONFERENCE SCOPE. Contributions are sought in all areas of logic programming, inc-
luding but not restricted to:

— Theory: Semantic Foundations, Formalisms, Nonmonotonic Reasoning, Knowledge
Representation.

— Implementation: Compilation, Virtual Machines, Parallelism, Constraint Handling
Rules and Tabling.

— Environments: Program Analysis, Transformation, Validation, Verification, Debug-
ging, Profiling, Testing.

— Language Issues: Concurrency, Objects, Coordination, Mobility, Higher Order, Ty-
pes, Modes, Assertions, Programming Techniques.

— Related Paradigms: Inductive and Coinductive Logic Programming, Constraint Lo-
gic Programming, Answer-Set Programming, SAT, Constraints, Computational Ar-
gumentation, Abductive Logic Programming, Functional Logic Programming.

— Applications: Databases, Data Integration and Federation, Software Engineering,
Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelli-
gence, Bioinformatics, Social Networks and Social Choice.

In addition to the presentations of accepted papers, the technical program will inc-
lude invited talks, advanced tutorials, the doctoral consortium, the Prolog contest and
several workshops.

SUBMISSION DETAILS. There are two categories for submissions:

— Regular papers, including: (1) technical papers for describing technically sound, in-
novative ideas that can advance the state of logic programming; (2) application pa-
pers, with emphasis on impact on some application domains; (3) system and tool
papers, with emphasis on novelty, practicality, usability and availability of the sys-
tems and tools described.

— Technical communications aimed at describing recent developments, new projects,
and other materials not ready for publication as regular papers.

All regular papers and technical communications will be presented during the con-
ference. All submissions must be written in English and describe original, previo-
usly unpublished research, and must not simultaneously be submitted for publi-
cation elsewhere. Regular papers must not exceed 12 pages plus bibliography: ho-
wever the papers may include appendices beyond 12 pages. Technical communica-
tions must not exceed 10 pages. Submissions must be made in the TPLP format
(see http://journals.cambridge.org/images/fileUpload/images/tlp_ifc MAY2014.pdf) via
the EasyChair submission system, available at
http://www.easychair.org/conferences/?conf=iclp2015.

PAPER PUBLICATION. All accepted regular papers will be published in the journal The-
ory and Practice of Logic Programming (TPLP), Cambridge University Press (CUP), in
one or more special issues. In order to ensure the quality of the final version, papers
may be subject to two rounds of refereeing (within the decision period). Accepted tech-
nical communications will be published in archival form. The program committee may
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also recommend papers submitted as regular to be published as technical communica-
tions.

ICLP 2015 ORGANIZATION.

— General Co-Chairs:
Barry O’Sullivan, University College Cork, Ireland; Roland Yap,National University
of Singapore.

— Program Co-Chairs:
Thomas Eiter, TU Wien, Austria; Francesca Toni, Imperial College London, UK.

— Local Arrangements Co-Chairs: Barry O’Sullivan, University College Cork, Ireland;
Ken Brown, University College Cork, Ireland.

— Workshops Chair: Mats Carlsson, SICS, Uppsala, Sweden.

— Doctoral Consortium Chairs: Marina De Vos, University of Bath, UK; Yuliya Lierler,
University of Nebraska at Omaha, USA.

— LP/CP Programming Contest Chair: Neng-Fa Zhou, City University of New York,
USA,; Peter Stuckey, NICTA and the University of Melbourne, Australia.

— Publicity Chair: Ian Miguel, University of St Andrews, UK.

13TH INTERNATIONAL SYMPOSIUM ON AUTOMATED TECHNOLOGY FOR VERIFICATION
AND ANALYSIS (ATVA 2015)

October 12-15, 2015
Shanghai, China
http://atva2015.i0s.ac.cn/

BACKGROUND. The purpose of ATVA is to promote research on theoretical and prac-
tical aspects of automated analysis, verification and syn-thesis by providing a forum
for interaction between the regional and the international research communities and
industry in the field.

SCOPE. ATVA 2015 solicits high-quality submissions in areas related to the theory
and practice of automated analysis and verification of hardware and software systems.
Topics of interest include, but are not limited to:

— Formalisms for modeling hardware, software and embedded systems

— Specification and verification of finite-state, infinite-state and parameterized sys-
tems

— Program analysis and software verification

— Analysis and verification of hardware circuits, systems-on-chip and embedded sys-
tems

— Analysis of real-time, hybrid, priced/weighted and probabilistic systems

— Deductive, algorithmic, compositional, and abstraction refinement techniques for
analysis and verification

— Analytical techniques for safety, security, and dependability

— Testing and runtime analysis based on verification technology

— Analysis and verification of parallel and concurrent hardware/software systems

— Verification in industrial practice

— Applications and case studies Theory papers should preferably be motivated by
practical problems, and applications should be based on sound theory and should
solve problems of practical interest.

IMPORTANT DATES.
— April 22, 2015 Abstract submission deadline (AOE)
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— April 25, 2015 Paper submission deadline (AOE)

— May 5, 2015 Submission of workshop proposals
—dJun 8, 2015 Paper acceptance/rejection notification
—dJun 10, 2015 Announcement of the accepted papers
—dJuly 5, 2015 Camera-ready copy deadline

GENERAL CHAIR. Jifeng He (East China Normal University, China)

PROGRAMME CHAIRS. Bernd Finkbeiner (Saarland University, Germany), Geguang Pu
(East China Normal University, China), Lijun Zhang (Institute of Software, Chinese
Academy of Sciences)

PUBLICITY CHAIRS. David N. Jansen (Radboud Universiteit, Netherlands), Huibiao Zhu
(East China Normal University, China)

WORKSHOP CHAIR. Jun Sun (National University of Singapore, SG)

KEYNOTES. Dino Distefano (Queen Mary, University of London, UK), Joost-Pieter Ka-
toen (RWTH Aachen University, Germany), Jay Strother Moore (University of Texas-
Austin, USA)

SYMPOSIUM ON DEPENDABLE SOFTWARE ENGINEERING: THEORIES, TOOLS AND
APPLICATIONS (SETTA 2015)

Call for Papers

November 4-6, 2015

Nanjing University
http://cs.nju.edu.cn/setta/

BACKGROUND AND OBJECTIVES. The aim of the symposium is to bring together inter-
national researchers and practitioners in the field of software technology. Its focus is on
formal methods and advanced software technologies, especially for engineering com-
plex, large-scale artefacts like cyber-physical systems, networks of things, enterprise
systems, or cloud-based services. Contributions relating to formal methods or integra-
ting them with software engineering, as well as papers advancing scalability or wide-
ning the scope of rigorous methods to new design goals are especially welcome. Being
hosted in China, the symposium will also provide a platform for building up research
collaborations between the rapidly growing Chinese computer science community and
its international counterpart. The symposium will support this process through dedi-
cated events and therefore welcomes both young researchers considering international
collaboration in formal methods and established researchers looking for international
cooperation and willing to attract new colleagues to the domain.

SUBMISSIONS. Authors are invited to submit papers on original research, industrial
applications, or position papers proposing challenges in fundamental research and
technology. The latter two types of submissions are expected to contribute to the
development of formal methods either by substantiating the advantages of integra-
ting formal methods into the development cycle or through delineating need for re-
search by demonstrating weaknesses of existing technologies, especially when ad-
dressing new application domains. Submissions can take the form of either normal
or short papers. Short papers can discuss ongoing research at an early stage, inclu-
ding PhD projects. Papers should be written in English. Regular Papers should not
exceed 15 pages and Short Papers should not exceed 6 pages in LNCS format (see
http://www.springer.de/comp/Incs/authors.html for details). The proceedings will be pu-
blished as a volume in Springer’s LNCS series. The authors of a selected subset of ac-
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cepted papers will be invited to submit extended versions of their papers to appear in
a special issue of the Formal Aspect Computing journal.

TOPICS.

— Requirements specification and analysis

— Formalisms for modeling, design and implementation

— Model checking, theorem proving, and decision procedures

— Scalable approaches to formal system analysis

— Formal approaches to simulation and testing

— Integration of formal methods into software engineering practice

— Contract-based engineering of components, systems, and systems of systems
— Formal and engineering aspects of software evolution and maintenance
— Parallel and multicore programming

— Embedded, real-time, hybrid, and cyber-physical systems

— Mixed-critical applications and systems

— Formal aspects of service-oriented and cloud computing

— Safety, reliability, robustness, and fault-tolerance

— Empirical analysis techniques and integration with formal methods

— Applications and industrial experience reports

— Tool integration

IMPORTANT DATES.

—dJune 12,2015 Abstracts

—dJune 19,2015 Submission of papers

— August 21,2015 Notification to authors
— September 4,2015 Camera-ready versions

KEYNOTE SPEAKERS. Sanjoy Baruah, University of North Carolina at Chapel Hill,
USA,; David Harel, Weizmann Institute of Science, Israel; Huimin Lin, Institute of
Software, CAS, China

GENERAL CHAIR. Jian Lv, Nanjing University, China

PROGRAMME CO-CHAIRS. Xuandong Li, Nanjing University, China; Zhiming Liu, Bir-
mingham City University, UK; Yi Wang, Uppsala University, Sweden

PUBLICITY CHAIRS. Jonathan Bowen, Birmingham City University, UK; Lijun Zhang,
Institute of Software,Chinese Academy of Sciences, China

PUBLICATION CHAIR. Martin Fraenzle, University of Oldenburg, Germany
LOCAL ORGANIZATION CHAIR. Xin Chen, Nanjing University, China

NEW DOCTORAL PROGRAM ON LOGICAL METHODS IN COMPUTER SCIENCE (LogiCS)

http://logic-cs.at/phd
Funded Doctoral Positions in Computer Science

PROGRAM. TU Wien, TU Graz, and JKU Linz are seeking exceptionally talented and
motivated students for their joint doctoral program LogiCS. The LogiCS doctoral
college focuses on interdisciplinary research topics covering (i) computational logic,
and applications of logic to (ii) databases and artificial intelligence as well as to (iii)
computer-aided verification.
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THE PROGRAM. LogiCS is a doctoral college focusing on logic and its applications in
computer science. Successful applicants will work with and be supervised by leading
researchers in the fields of computational logic, databases and knowledge representa-
tion, and computer-aided verification.

FACULTY MEMBERS. M. Baaz, A. Biere, R. Bloem, A. Ciabattoni, U. Egly, T. Eiter, C.
Fermueller, R. Grosu, A. Leitsch, M. Ortiz, R. Pichler, S. Szeider, H. Tompits, H. Veith,
G. Weissenbacher

POSITIONS AND FUNDING. We are looking for 1-2 doctoral students per fa-
culty member, where 30% of the positions are reserved for highly quali-
fied female candidates. The doctoral positions are funded for a period of 3
years according to the funding scheme of the Austrian Science Fund (details:
http://www.fwf.ac.at/de/projects/personalkostensaetze.html) The funding can be exten-
ded for one additional year contingent on a placement at one of our international part-
ner institutions.

HOW TO APPLY. Detailed information about the application process is available on the
LogiCS web-page http://logic-cs.at/phd/ The applicants are expected to have completed
an excellent diploma or master’s degree in computer science, mathematics, or a related
field. Candidates with comparable achievements will be considered on a case-by-case
basis. Applications by the candidates need to be submitted electronically. Applications
can be submitted at any time. Next screenings: March 1, 2015.

HIGHEST QUALITY OF LIFE. The Austrian cities Vienna, Graz, and Linz, located close to
the Alps and surrounded by beautiful nature, provide an exceptionally high quality of
life, with a vibrant cultural scene, numerous cultural events, world-famous historical
sites, a large international community, a varied cuisine and famous coffee houses. For
further information please contact: info@logic-cs.at
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