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From the Editor

In this issue

– Mikołaj Bojańczyk’s Automata column presents a category-theoretic perspective
on automata and minimization in an article by Thomas Colcombet and Daniela
Petrişan.

– Mai Gehrke and Andreas Krebs introduce us to Stone duality in Neil Immerman’s
column on Complexity.

– Neha Rungta’s Verification column features two articles:

- Stephen Siegel discusses CIVL Solutions to the VerifyThis 2016 Challenges, and
- Chao Wang and Patrick Schaumont write about formal methods for detecting and
eliminating side-channel leaks.

– Bernardo Toninho reports on this year’s POPL in the Conference Reports section,
edited by Jorge A. Pérez.

– As usual, we wrap up with the latest issue of SIGLOG Monthly, prepared by Daniela
Petrişan.

SIGLOG News is still looking for a volunteer to coordinate a section on book reviews.
Please email editor@siglog.org if you are interested.

Andrzej Murawski
University of Warwick
SIGLOG News Editor
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Chair’s Letter

The summer conference and travel season is almost upon us. This year the activity will
be focussed on Europe. We will have LICS in Iceland, MFPS in Slovenia and ICALP
in Poland. Other smaller workshops and meetings will also happen, notably QPL in
the Netherlands. Later in the summer CSL will be in Sweden and CONCUR will be
held together with FORMATS, QEST and EPEW in Germany. Next year, of course,
we will have the mammoth FLoC meeting in Oxford where the whole community gets
together. It is always great to see each other face-to-face and renew ties and exchange
ideas.

SIGLOG membership seems to be in a slight decline and I am wondering why. With
deep discounts at many conferences and extremely low annual dues it seems to me that
SIGLOG membership is a bargain. Also the sterling work of our Newsletter Editor and
the column editors gives us a newsletter than rivals that of any other SIG. This issue is
over a 100 pages and is filled with technical content and community news. If you have
let your membership lapse please do remember to renew. Looking forward to seeing
many of you this summer.

Prakash Panangaden
McGill University
ACM SIGLOG Chair
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AUT

AUTOMATA COLUMN
MIKOŁAJ BOJAŃCZYK, University of Warsaw
bojan@mimuw.edu.pl

This column is about minimising automata, which is one of the fundamental themes
in automata theory. The classical result is that deterministic finite automata on finite
words can be minimised. However minimisation (or more importantly, the existence
of a unique canonical device) is also true in a very wide variety of other settings, inc-
luding different types of inputs (words, infinite words, trees, etc.) as well as different
types of outputs (yes/no values, numbers, or other words, etc.). In this column, Tho-
mas Colcombet and Daniela Petrişan have a look at minimisation from an abstract
(categorical) perspective, and establish what are the conditions needed for a model of
automata to admit minimisation.
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Automata and minimization1

Thomas Colcombet Daniela Petrişan

IRIF, CNRS IRIF, CNRS

Already in the seventies, strong results illustrating the intimate relationship between category theory
and automata theory have been described and are still investigated. In this column, we provide a uniform
presentation of the basic concepts that underlie minimization results in automata theory. We then use this
knowledge for introducing a new model of automata that is an hybrid of deterministic finite automata and
automata weighted over a field. These automata are very natural, and enjoy minimization result by design.

The presentation of this paper is indeed categorical in essence, but it assumes no prior knowledge from
the reader. It is also non-conventional in that it is neither algebraic, nor co-algebraic oriented.

1. INTRODUCTION
In this column, we attempt to give a simple, user-friendly, description of how category
theory sheds an interesting light on some aspects of automata theory and in particular
concerning the existence of minimal recognizers.

Seen from distance, an automaton is a machine that

processes an input, respecting
its structure (word, tree, infinite

word or tree, trace, . . . )
and

outputs a quantity in some
universe of output values
(Boolean values, probabilities,
vector space, words, . . . )

These two aspects, structure of the input and universe of outputs play an essen-
tially orthogonal role, and provide a good organization scheme in the description of
the landscape of automata. Though sometimes interacting, these two axes deserve to
be understood in an independent way. An important unification step for understand-
ing the structure of the input axis has been described by Bojańczyk [Bojańczyk 2015]
thanks to the use of ‘monads’ from category theory. Our focus is on the universe of
output values axis.

In this paper, we focus our attention to the universe of outputs, and the related
notion of state space. Here, once more, category theory offers a neat understanding of
phenomena. We assume no knowledge of category theory from the reader.

THEOREM 1.1. Given an automaton A in a class C, there exists another automa-
ton M in C which is algebraically minimal2 while having the same semantics.

1This work was supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No.670624), and by the DeLTA ANR project
(ANR-16-CE40-0007). The authors also thank the Simon’s Institute for the Theory of Computing where this
work has been partly developed.
2It is a common approximation to say that an automaton is minimal if its number of states is minimal. We
emphasize that this is not the notion we consider by using the terminology algebraically minimal.
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This theorem is very well known for deterministic (and complete) automata as pre-
sented in the seminal work of Rabin and Scott [Rabin and Scott 1959]. It also known
from Schützenberger’s work on automata weighted over a field [Schützenberger 1961]
(that we will present in more detail). Other similar results involve automata over trees
[Brainerd 1968], deterministic transducers [Choffrut 1979; Choffrut 2003], syntac-
tic monoids [Schützenberger 1965], syntactic !/⇧/�-semigroups [Perrin and Pin 1995;
Bedon 1996; Bedon et al. 2010; Carton et al. 2011; Colcombet and A. V. 2015], stabil-
isation monoids [Colcombet 2009; Kuperberg 2011; Colcombet 2013], syntactic semir-
ings for languages [Polák 2001], syntactic forest algebras [Bojańczyk and Walukiewicz
2008], syntactic nominal monoids [Bojańczyk 2011], and so on. However, it also fails
for many other classes, starting with non-deterministic automata or deterministic au-
tomata over infinite inputs.

A goal of this paper is to give a neat description of what this approach means at
an abstract level, and why it sometimes works, and sometimes not. This will be also
the occasion to describe new forms of automata, namely hybrid-set-vector automata
that were not known in the literature, that extend both deterministic finite automata
and automata weighted over a field, while preserving the property of admitting al-
gebraically minimal automata (the computation of which being still open). This is an
example of the process of using a category-theoretic approach for defining new devices
(here automata) that enjoy strong properties by design.

Structure of the column
In Section 2, we present the very natural notion of an automaton in a category, the
examples of deterministic automata and vector space automata, as well as the mini-
malistic concepts of category theory that are required for this definition to make sense.
In Section 3 we explain the concepts that are behind results of minimization, and in
particular the one of factorization. In Section 4 we present the hybrid-set-vector au-
tomata. In Section 5 we discuss the connection between automata and category theory
and some of the literature on this topic.

2. AUTOMATA IN A CATEGORY AND THEIR SEMANTICS
In this section, after studying classical examples, we introduce the notion of an au-
tomaton in a category. This presentation does not contain any new material, but de-
parts from the literature in that it doesn’t adopt the algebraic or the coalgebraic pre-
sentation of these objects. We hope that the resulting presentation is simpler, requires
less background, and more faithfully follows the spirit of standard automata theory.

Before pursuing this description, we need to understand what is the semantics of an
automaton. Let us start with these two examples:

DETERMINISTIC AUTOMATA
A deterministic automaton (finite or infi-
nite), or simply a Set-automaton is a tuple

A = hQ,A, i, f, �i
in which Q is a set of states, A is the
input alphabet, i : 1 ! Q is the initial
map (where 1 is some one element set, let
us say {0}), f : Q ! 2 is the final map
(where 2 is some two element set, let us
say {0, 1}), and �a : Q ! Q is the transi-
tion map for the letter a for all a 2 A.

VECTOR SPACE AUTOMATA
Let us consider vector spaces over a base
field K. A vector space automaton, or sim-
ply a Vec-automaton, is a tuple

A = hQ,A, i, f, �i
in which Q is a vector space of configura-
tions , A is the input alphabet, i : K ! Q

is the initial map, f : Q ! K is the final
map, and �a : Q ! Q is the linear transi-
tion map for letter a 2 A.
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Given a word u = a

1

. . . an 2 A

⇤, the
Set-automaton A accepts the map

[[A]](u) = f � �an � · · · � �a1 � i .
Since a map from 1 to 2 can take only
two possible values: the constant 0 and
the constant 1, [[A]] can be understood as
associating to each input word u either 1

(and we say that the word is accepted),
or 0 (and we say that the word is rejected).
Hence, it computes a language. We recog-
nize here, in a barely disguised wording,
the standard definition of a DFA.

Example 2.1. Consider the lan-
guage L

set

over the finite alphabet
A = {a, b, c} defined by:
L

set

= {u 2 A

⇤ | |u|b is even and |u|c = 0} .
An automaton A

set

for this L is as fol-
lows:
— the set of states is Q = {p, q, r},
— the initial map selects p 2 Q,
— the final map maps p to 1, and q, r to 0.
— the transition maps are described be-

low in the standard way

p q

r

b

a

c

b

a

c

a, b, c

Given a word u = a

1

. . . an 2 A

⇤, the
Vec-automaton A accepts the linear map

[[A]](u) = f � �an � · · · � �a1 � i .
Since a linear map from K to K is of the
form x 7! ax for some a 2 K, [[A]] can be
understood as associating to each input
word u a scalar a 2 K. This is a variation
around the idea of an automaton weighted
over a field of Schützenberger [Schützen-
berger 1961]3.

Example 2.1. Consider the following
map L

vec

which to a word u associates the
linear map L

vec

(u) : R ! R defined by:

L

vec

(u)(x) =

8
<

:

2

|u|a
x if |u|b is even

and |u|c = 0,
0 otherwise

An automaton A
vec

for this L is as follows:
— the vector space of configurations is

R2,
— the initial map maps x to (x, 0),
— the final map maps (x, y) to x,
— the transition map for a maps (x, y) to

(2x, 2y),
— the transition map for b maps (x, y) to

(y, x),
— the transition map for c maps (x, y) to

(0, 0).
It is easy to check that this vector space
automaton x accept L

vec

.

3The two differences being that in our case, (a) the
vector spaces can be of infinite dimension, and (b)
there is no need for choosing a basis for Q, as it is
done in the original definition.

Inspecting the two above definitions of automata, it is obvious that these can be uni-
fied. Category theory is certainly the proper language for such a unification. Let us
give as a starter some very elementary definitions concerning categories.

WHAT IS A CATEGORY?
A category has essentially two parts:

(objects, arrows) ,

ACM SIGLOG News 6 April 2017, Vol. 4, No. 2



where the objects are denoted X,Y, . . . , and each arrow, denoted f : X ! Y , goes from
a source object X to a target object Y .

Typical categories are:
Set = (sets, functions between sets), Vec = (vector spaces, linear maps),
Pos = (ordered sets, order preserving maps), Aff = (affine spaces, affine maps),
Rel = (sets, relations between sets), Grp = (groups, group morphisms),
Top = (topological spaces, continuous maps), . . .

Furthermore, properly defined categories have to contain the following extra pieces
of information:
(a) for all objects X, there is an arrow IdX : X ! X called the identity of X, and
(b) given arrows f : X ! Y , g : Y ! Z, there exists a composite arrow g � f : X ! Z.
The complete the definition, the composition of arrows has to be associative, and the
identity has to act as a neutral element for it (on the left and on the right).

Finally, define an arrow f : X ! Y to be an isomorphism if there exists an ar-
row g : Y ! X such that g � f = IdX and f � g = IdY . If such an isomorphism exists,
then X and Y are isomorphic.

All these properties are obvious in the above examples, with the natural notion of
identity arrow and composition of arrows. In what follows the categories that we used
are essentially Set and Vec, in which all the categorical notions that we are interested
in have a natural meaning.

We are now ready to describe what is a (word) language in a category and an au-
tomaton in a category.

Definition 2.2. Let us fix an alphabet A, a category C, and two of its objects I and F .
A (C, I, F )-language L is a map that associates to each word u 2 A

⇤ an arrow L(u) : I !
F in C.

A (C, I, F )-automaton is a tuple:
A = hQ,A, i, f, �i

in which Q is an object from C called the state object, A is the input alphabet, i : I ! Q

is an arrow of C called the initial arrow f : Q ! F is an arrow of C called the final arrow
and �(a) : Q ! Q is an arrow of C for all letters a 2 A, called the transition arrows.

Given a word u = a

1

. . . an 2 A

⇤, a (C, I, F )-automaton A recognizes the (C, I, F )-
language [[A]] defined for all u 2 A

⇤ by:
[[A]](u) = f � �(an) � · · · � �(a1)| {z }

�⇤(u)

� i .

Given a (C, I, F )-language L, an automaton for L is a (C, I, F )-automaton that recog-
nizes L.

DETERMINISTIC AUTOMATA
A deterministic automaton is nothing but
a (Set, 1, 2)-automaton.

VECTOR SPACE AUTOMATA
A vector space automaton is nothing but
a (Vec,K,K)-automaton.

As usual when adopting a category theoretic approach, it is not sufficient to know
what are the objects we are interested in, but we need also to know how these are
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related through arrows. In our case, the arrows are the morphisms of automata that
we introduce now.

Definition 2.3 (category of automata for a language). A morphism of (C, I, F )-
automata from A = hQA, A, iA, fA, �Ai to B = hQB, A, iB, fB, �Bi, is an arrow of C
h : QA ! QB such that for all letters a 2 A,

h � iA = iB, h � �A(a) = �B(a) � h, and fA = fB � h,
or said differently, such that the following three diagrams commute:

QA QA QA QA

I F

QB QB QB QB

h

�A(a)

h h

fA

h

iA

iB

�B(a)

fB

(1)

Given a (C, I, F )-language L, define the category of automata for L to be the category
which has as objects the (C, I, F )-automata that recognize L, and as arrows the mor-
phisms of automata. We denote it by:

AutoL .

Note that whenever there is a morphisms of automata between two automata, then
both have to recognize the same language.

3. ALGEBRAIC MINIMIZATION OF AUTOMATA, AND FACTORIZATIONS IN A CATEGORY
In this section, we explain some features of the category of automata for a language
that make minimization of automata possible. There are essentially three required
properties: (1) the existence of an initial automaton for the language, and (2) sym-
metrically, the existence of a final automaton for the language, and (3) the fact that
the category of automata for the language has a factorization system. We begin our
description with this last point.

3.1. Divisibility and factorization
The standard definition is that a deterministic automaton M is said algebraically min-
imal if for all other deterministic automata A for the same language, M divides A with
the definition:

“B divides A if B is the quotient of a subautomaton of A .”
Hence we need to understand what is a quotient and what is a subautomaton. Both no-
tions are related to the one of morphisms of automata: indeed, a quotient is the image
of the automaton under a ‘surjective morphism’, and a subautomaton is an automaton
which is sent into the other one under an ‘injective morphism’.

The notion of ‘surjectivity’ and ‘injectivity’ is the subject of the notion of factoriza-
tions in a category that we recall here.3 An accessible and comprehensive reference for
all matters concerning factorization systems is [Adámek et al. 1990].

3Usually, an emphasis is put on the fact that quotients correspond to ‘regular epis’, and subobjects to
‘monomorphism’. We try to avoid these case specific considerations, and concentrate here on the proper-
ties that arrows should have to be considered as ‘surjective like’ and ‘injective like’: namely that the two
classes form a factorization system.
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Definition 3.1. For two classes of arrows E and M, we say that (E ,M) forms a fac-
torization system if the following conditions hold, where we denote the arrows in E by
two-headed arrows ⇣ and the arrows in M by ⇢.
— The arrows that are both in E and M are exactly the isomorphisms.
— The E-arrows are closed under composition.
— The M-arrows are closed under composition.
— For every arrow f : X ! Y , there exists an E-arrow e : X ⇣ Z and a M-arrow

m : Z ⇢ Y such that
f = m � e .

This composition is called the factorization of f . We also refer to the object Z as the
factorization of f .

— For every arrow e : X ⇣ T in E , g : T ! Y , f : X ! S and m : S ⇢ Y in M such
that g�e = m�f , there exists one and exactly one arrow d : T ! S such that d�e = f

and m � d = g. In other words, if the following square commutes, then there exists a
unique diagonal arrow such that the resulting diagram commutes:

X T

S Y

e

f g
d

m

(2)

This property is usually called the diagonal property and the unique morphism d is
called a diagonal fill.
Note that the combination of the above properties make the factorization of an arrow

unique up to isomorphisms: indeed, if m � e = m

0 � e0 = f are two factorizations of an
arrow f through Z, respectively Z

0, then by the diagonal property there exist unique
arrows d : Z ! Z

0 and d

0
: Z

0 ! Z, so that d�e = e

0, d0�e0 = e, m0�d = m and m�d0 = m

0.
It readily follows that d and d

0 are isomorphisms inverse to each other. For example,
both d

0 � d and IdZ are diagonal fills for the square

X Z

Z Y ,

e

e m

d0�d

IdZ

m

(3)

and hence, by uniqueness of the diagonal fill, we have d

0 � d = IdZ . This is a very
standard argument in category theory.

Given a factorization system (E ,M), an E-quotient (or simply a quotient if E is clear
from the context) of an object X is an arrow e : X ⇣ Y that belongs to E . For ease
of language, it also happens that Y itself is called a quotient of X. Similarly, an M-
subobject of an object X (or simply a subobject if M is clear from the context) is an
arrow m : Y ⇢ X with m in M.

There may be several pairs of classes of arrows (E ,M) that yield a factorization
system in the same category. For instance, in all categories, we can take E to be the
isomorphisms and M to be all arrows (or the other way round), though this does not
give us a very interesting notion. . . This is the reason why quotients and subobjects
are notions relative to the choice of a factorization system. It is nevertheless true that
in a lot of situations, a satisfying choice is to chose E to be the class of ‘regular epis’,
and M to be the class of ‘monomorphisms’; in particular, this works for categories of
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algebraic structures such as Set, Grp, Vec or Aff. It also works well as for topological
spaces Top.

It is good to see some examples.

IN THE CATEGORY OF SETS
In the category of sets, a natural (E ,M)-
factorization is obtained by taking E to be
the class of surjections and M the class
the injections. The important thing is that
every map f : X ! Y can be decomposed
as a composite of an injective map m and
a surjection e:

X Z Y

e m

The codomain of e is the image of f , as
can be seen in the next picture.

7!
f e

mX Y Z

X

Y

Moreover, the diagonal property holds.
Indeed, interpreting diagram (4) in the
category of sets, we define d as follows.
For t 2 T we put d(t) = f(x) for some
x 2 e

�1

(t). Such an x exists since e is
surjective, and, moreover, the definition
of d(t) does not depend on its choice,
since m is injective. Indeed, for any other
x

0 2 e

�1

(t) we have f(x) = f(x

0
) since m

is injective and m(f(x)) = m(f(x

0
)) = g(t).

IN THE CATEGORY OF VECTOR SPACES
In the category of vector spaces, we define
E as the class of surjective linear maps
and M as the class of injective linear
maps. Analogously to the Set case, one ob-
tains an (E ,M)-factorization.

Furthermore, the notion of factorization
naturally yields the one of rank. Indeed if
we decompose a linear map f : X ! Y as
the composite:

X Z Y

e m

then the dimension of Z is exactly the
rank of the linear map f .

A reason why the definition of a factorization system is so important is that it is
extremely robust: in particular it naturally ‘extends component-wise to functor cat-
egories’, (we will briefly discuss functor categories and their relevance for automata
in this context in Section 5.2). In our case, this robustness appears in the following
lemma, which follows a standard categorical line of proof:

LEMMA 3.2. Let (E ,M) be a factorization system for the category C. Then
(E

Auto

,M
Auto

) forms a factorization system for the category AutoL for all (C, I, F )-
languages L, where

— E
Auto

consists of these morphisms of automata that happen to belong to E , and
— M

Auto

consists of these morphisms of automata that happen to belong to M.

3.2. Initial and final automata
Apart from factorizations, the other ingredient that is required for having minimal
automata is the existence of an initial automaton and of a final automaton in the
category of automata for a language.
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Definition 3.3. An object I in a category is initial if for all objects X there exists a
unique arrow I ! X. Similarly, an object F is final if for all objects X there exists a
unique arrow X ! F .

Initial and final objects, when they exist, are unique up to isomorphism. We shall
see now that in our two running examples of categories of automata, the initial and
final objects do exist.

DETERMINISTIC AUTOMATA
Let L be a (Set, 1, 2)-language, i.e. L(u) is
a map from 1 to 2.

The initial automaton for L is the
(Set, 1, 2)-automaton such that:
— The set of states is A

⇤.
— The initial map 1 ! A

⇤ selects ".
— The final map sends a state u 2 A

⇤

to L(u) 2 2.
— The transition map for a letter a is

�(a)(u) = ua.
It is easy to check that this automaton
recognizes the language L, hence it be-
longs to AutoL. A closer inspection reveals
that automaton is in fact initial in the cat-
egory AutoL.

The final automaton for L is the
(Set, 1, 2)-automaton such that:
— The states are the (Set, 1, 2)-

languages, i.e. the maps from A

⇤

to maps from 1 to 2.
— The initial map sends 1 to L.
— The final map sends state R to R(").
— The transition map for letter a sends

the state R to a

�1

(R) which maps each
word u to R(au).

Once more, this automaton recognizes
the language L, hence it belongs to AutoL.
Again, a closer inspection reveals that
automaton is in fact final in the cate-
gory AutoL.

VECTOR SPACE AUTOMATA
Let L(u) be a linear map from K to K for
all words u. The initial automaton for L

is such that: is the (Vec,K,K)-automaton
such that:
— The state space is the vector space

with basis (eu)u2A⇤ .
— The initial map sends x 2 K to xe".
— The final map sends eu to L(u)(1K).
— The transition map for the letter a

sends eu to eua.
This vector space automaton recognises
the (Vec,K,K)-language L. A closer in-
spection shows that it is in fact initial
with this property.

The final automaton for L is such that

— The state space is the vector space KA⇤

of all functions from A

⇤ to K.
— The initial map sends 1K 2 K to the

function mapping u 2 A

⇤ to L(u)(1K).
— The final map sends h 2 KA⇤

to h(").
— The transition map for the letter a

sends h 2 KA⇤
to �u.h(au) 2 KA⇤

.
This automaton recognizes the lan-
guage L, hence it belongs to AutoL. Yet
this time, a closer inspection reveals
that automaton is in fact final in the
category AutoL.

In fact, there are some cases—like in the above examples—in which the existence of
such initial and final automata for a language exist for easy category theoretic argu-
ments. This is witnessed by the following lemma (which we include here for complete-
ness, although we do no provide the very classical definitions of power and copower in
this column, see [Mac Lane 1978]):

LEMMA 3.4. If the countable copower of I exists in C, then for all (C, I, F )-
languages L the category AutoL has an initial object, called the initial automaton for L.
If the countable power of F exists in C, then for all (C, I, F )-languages L the category
AutoL has a final object, called the final automaton for L.
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In particular, in the running examples, we have:

DETERMINISTIC AUTOMATA
Let L be a (Set, 1, 2)-language, i.e. L(u) is
a map from 1 to 2.

The set of states A

⇤ of the initial au-
tomaton for L is the copower (or coprod-
uct) of A⇤-many copies of 1.

The set of states 2

A⇤ of the final au-
tomaton for L is the power (or product) of
A

⇤-many copies of 2.

VECTOR SPACE AUTOMATA
Let L(u) be a linear map from K to K for
all words u.

The vector space of configurations of the
initial automaton for L is the copower (or
coproduct) of A⇤-many copies of K, that is,
the direct sum

L
u2A⇤

K of A

⇤-many copies

of K.
The vector space of configurations of

the final automaton for L is the power
(or product) of A⇤-many copies of K, that
is, the direct product

Q
u2A⇤

K of A

⇤-many

copies of K.

3.3. Minimal automaton and minimization
At last, we are able to provide a general description of why there exists a minimal
automaton for a language, and what is the general procedure for minimizing a given
automaton.

In fact, the notion of a minimal automaton is now generic, it is a notion that works
whenever there is an initial object, a final object, and some factorization system (E ,M).

Consider a factorization system (E ,M) for a category A and two of its objects X,Y .
Let us say that:

X (E ,M)-divides Y if X is an E-quotient of an M-subobject of Y .

Let us note immediately that in general this notion of (E ,M)-divisibility may not be
transitive4. It is now natural to define an object M to be (E ,M)-minimal in the category,
if it (E ,M)-divides all objects of the category. Note that there is no reason a priori
that an (E ,M)-minimal object in a category, if it exists, be unique up to isomorphism.
Nevertheless, is our case, when the category has both initial and a final object, we can
state the following minimization lemma:

LEMMA 3.5. Let A be a category with initial object I and final object F and let
(E ,M) be a factorization system for A. Define for every object X:

— Min to be the factorization of the only arrow from I to F ,
— Reach(X) to be the factorization of the only arrow from I to X, and
— Obs(X) to be the factorization of the only arrow from X to F .

Then

— Min is (E ,M)-minimal, and
— Min is isomorphic to both Obs(Reach(X)) and Reach(Obs(X)) for all objects X.

PROOF. The proof essentially consists of a diagram:

4There are nevertheless many situations for which it is the case; In particular when the category is regular,
and E happens to be the class of regular epis. This covers in particular the case of all algebraic categories
with E-quotients being the standard quotients of algebras, and M-subobjects being the standard subalge-
bras.
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X

I Reach(X) Obs(Reach(X)) F

Min

Using the definition of Reach and Obs, and the fact that E is closed under com-
position, we obtain that Obs(Reach(X)) is an (E ,M)-factorization of the only arrow
from I to F . Thus, thanks to the diagonal property of an factorization system, Min
and Obs(Reach(X)) are isomorphic. Hence, furthermore, since Obs(Reach(X)) (E ,M)-
divides X by construction, the same holds for Min. In a symmetric way, Reach(Obs(X))

is also isomorphic to Min.
COROLLARY 3.6. Let L be a (C, I, F )-language for which C has a factorization sys-

tem (E ,M) such that AutoL contains both an initial automaton I and a final automaton
F . Then:
— The (C, I, F )-automaton S for L that is at the middle point of an (E

Auto

,M
Auto

)-
factorization of the only automata morphism from I to F is called the syntactic
automaton for L.

— The syntactic automaton for L S (E
Auto

,M
Auto

)-divides every automaton for L.
— For all automata A for L, S is isomorphic to both Reach(Obs(A)) and Obs(Reach(A)).
The process of starting from an automaton, and applying to it Reach then Obs (in any
order) is called ’minimization. Note that implementing Reach and Obs in an effective
way is a problem that may prove difficult on its own, and we do not elaborate on this
aspect.

DETERMINISTIC AUTOMATA
It is well known that for all lan-
guages L ✓ A

⇤, there exists a minimal
deterministic automaton for it, that
furthermore is finite if and only L is
regular. Indeed, if L is accepted by a
finite automaton A, then, by Corollary 3.6
the syntactic automaton for L divides A,
hence its state space must be finite since
it is the quotient of a subset of a finite set.

VECTOR SPACE AUTOMATA
Similarly, it is well known that for all
languages L : A

⇤ ! K, there exists a
minimal vector space automaton for it,
that furthermore is finite dimensional
if and only L is regular. Indeed, if L is
accepted by a finite dimensional vector
space automaton A, then the syntactic
automaton is a quotient of A, hence its
state space must be finite dimensional
since it is the quotient of a subspace of a
finite dimensional space.

4. A NOVEL FORM OF AUTOMATA: HYBRID-SET-VECTOR AUTOMATA
In this section, we describe a new form of automata, which we can call hybrid-set-
vector automata, and which extend both deterministic finite automata and vector
space automata, while still possessing syntactic automata. We will see how this mini-
mization is obtained along the same lines described in this column so far.
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4.1. An intuition
Let us consider the vector space automaton A

vec

from Example 2.1 accepting the map
L

vec

, which corresponds to the weighted language A

⇤ ! R mapping u to 2

|u|a when u

does not contain any c and has even number of b’s, and to 0 otherwise.
Let us think for a moment on how one would “implement” the function L

vec

as an on-
line device that would get letters as input, and would modify its internal state accord-
ingly. Would we implement concretely the automaton of Example 2.1 directly? Probably
not, since there is a more economic5 way to obtain the same result: we can maintain
2

m where m is the number of a’s seen so far, together with one bit for remembering
whether the number of b’s is even or odd. Such an automaton would start with 1 in its
unique real valued register. Each time an a is met, the register is doubled, each time b

is met, the bit is reversed, and when c is met, the register is set to 0. At the end of the
input word, the automaton would output 0 or the value of the register depending on
the current value of the bit.

If we consider the configuration space that we use in this encoding, we use R ] R
instead of R⇥R. Essentially, the set of vectors spanned by applying in arbitrary order
the linear transformations �a, �b and �c from Example 2.1 to the vector (1, 0) 2 R2 is
the infinite set of vectors described in the above diagram. Of course, in the category
of vector spaces this set spans the whole R2. Yet, in this example this set lies on the
“union” of two one dimensional spaces. Can we define an automaton model that would
be able to faithfully implement this example?

4.2. A first generalization: disjoint unions of vector spaces.
A way to achieve this is to interpret the generic notion of automata in the category of
finite disjoint unions of vector spaces (duvs). One way to define such a finite disjoint
unions of vector spaces is to use a finite set N of ‘indices’ p, q, r . . . , and to each index p

associate a vector space Vp, possibly with different dimensions. The corresponding set
is:

{(p,~v) | p 2 N, ~v 2 Vp} .

A ‘map’ between duvs represented by (N,V ) and (N

0
, V

0
) is then a pair h : N ! N

0

together with a linear map fp from Vp to V

0
h(p) for all p 2 N . It can be seen as mapping

each (p,~v) 2 N⇥Vp to (h(p), fp(~v)). Call this a duvs map. Such duvs maps are composed
in a natural way. This defines a category, and hence we can consider duvs automata
which are automata with a duvs for its state space, and transitions implemented by
duvs maps.

For instance, we can pursue with the computation of L

vec

and provide a duvs au-
tomaton

Aduvs

= (Q

duvs

, i

duvs

, f

duvs

, �

duvs

)

where

Q

duvs

= {(s, x) | s 2 {even, odd}, x 2 K}
(considered as a disjoint union of vector spaces with set of indices {even, odd} and all
associated vector spaces V

even

= V

odd

= K). The maps can be conveniently defined as

5Under the assumption that maintaining a real is more costly than maintaining a bit.
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follows:

i

duvs

(x) = (even, x) (even, x) = (even, 2x) �

duvs

a (odd, x) = (odd, 2x)

f

duvs

(even, x) = x �

duvs

b (even, x) = (odd, x) �

duvs

b (odd, x) = (even, x)

f

duvs

(odd, x) = 0 �

duvs

c (even, x) = (even, 0) �

duvs

c (odd, x) = (odd, 0)

This automaton computes the language L

vec

. Automata over finite disjoint unions
of vector spaces generalize both deterministic finite state automata (using only 0-
dimensional vector spaces), and vector space automata (using only one index). In this
particular example, it can also be seen as a semi-direct product of a two state machine
with a purely vector space automaton, (but this remark fails when the spaces Vp have
different dimensions.) However, is it the joint generalization that we hoped for? The
answer is no...

4.3. Failure to minimize.
We could think that the above automaton Aduvs is minimal. However, it involved some
arbitrary decisions when defining it. This can be seen in the fact that when �

duvs

c is
applied, we chose to not change the index (and set to null the real value): this is arbi-
trary, and we could have exchanged even and odd, or fixed it arbitrarily to even, or to
odd. All these variants would be equally valid as far as computing L

vec

is concerned.
Let us provide some high level intuitions, invoking some standard automata-

theoretic concepts. The first remark is that every configuration in Q

duvs is ‘reachable’
in this automaton: indeed (even, x) = i

duvs

(x) and (odd, x) = �

duvs

b � iduvs(x) for all x 2 K.
Hence there is no hope to improve the automaton Aduvs or one of its variants by some
form of ‘restriction to its reachable configurations’. Only ‘quotienting of configurations’
remains. However, (using the only reasonable definition of quotient in duvs), one can
show that none among Aduvs and its variants is the quotient of another. More precisely,
if we keep in mind the Myhill-Nerode equivalence, what we would like to do is to merge
the configurations (even, 0) and (odd, 0) since these are observationally equivalent:

f

duvs � �duvsu (even, 0) = 0 = f

duvs � �duvsu (odd, 0) for all words u 2 A

⇤.

However, if we try to merge using a duvs map the configurations (even, 0) and (odd, 0),
we eventually obtain an automaton with one index associated to a one-dimensional
vector space. This would in fact be a vector space automaton, and we already men-
tioned that such an automaton cannot compute L

vec

. Overall, there is no minimal duvs
automaton for L

vec

.

4.4. The category of gluings of vector spaces
The subject of this section is to introduce hybrid-set-vector automata, and for this we
need to describe the category that they use: the category of gluings of vector spaces

Indeed, after the failure to minimize of the last section, the only reasonable thing
to do is to try to merge (even, 0) and (odd, 0), but nothing else (because no other pairs
of distinct states are observationally equivalent). This is made possible thanks to a
change of category, in which ‘gluings’ can be performed.

A direct definition
The first solution is to do it naturally: a gluing of vector spaces would be a disjoint
union of vector spaces enriched with some ‘equivalence’ representing how the different
components of the duvs have to be glued. Formally, a gluing of vector spaces (N,V )

consists of
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— a set of indices N and vector spaces (Vp)p2N , thus forming a disjoint union of vector
spaces, together with

— a gluing equivalence ⇠
glue

which is an equivalence relation on the corresponding
set

|(N,V )| = {(p,~v) | p 2 N, ~v 2 Vp}
such that for all distinct indices p, q 2 N ,
— the equivalence classes of ⇠

glue

restricted to each {p}⇥ Vp are singletons, and
— the equivalence classes of ⇠

glue

restricted to {p}⇥Vp [ {q}⇥Vq that are of size 2

form a linear bijection between a subspace of Vp and a subspace of Vq.

p

q

r

An example consists of three copies of R2, say p, q, r such
that furthermore

(p, x, 0) ⇠
glue

(q, 0, x) ,

(q, x, 0) ⇠
glue

(r, 0, x) ,

and (r, x, 0) ⇠
glue

(p, 0, x) .

This could be roughly described as the picture to the right.
The definition of maps of gluings of vector spaces is then

the one of maps of disjoint union of vector spaces, but that
would furthermore be required to preserve ⇠

glue

.6 For in-
stance, the map g which for all x, y 2 R is defined by:

g(p, x, y) = (q, y, x)

g(q, x, y) = (r, y, x)

g(r, x, y) = (p, y, x) ,

does preserve the structure of the above gluing equivalence, and hence is a valid map
of gluings of vector spaces.

Note that a map of gluings of vector spaces f : S ! T induces a map |f | : |S| ! |T |.
(In fact, this translation is a functor from the category of gluings of vector spaces to
the category of sets)

Definition 4.1. The gluings of vector spaces together with the maps between them
form a category called the category of gluings of vector spaces. We denote it Glue(Vec)
(we shall give some more explanations about this notation).

An hybrid-set-vector automaton is then simply an automaton in the category of glu-
ings of vector spaces.

Example 4.2. The hybrid-set-vector automaton for L

vec

that we are interested in
can now be described formally:

— the state object is a gluing of vector spaces that consists of two copies of the vector
space R, indexed as even and odd that are glued at 0, i.e.,

(even, 0) ⇠
glue

(odd, 0) .
This could be depicted as in the right figure, in
which the gluing equivalence is emphasized using
a black dot.

even

odd

6In fact, we are making an approximation here, since several such maps should be considered as equivalent.
For instance, in our example, the map of gluing of spaces (corresponding to the transition of letter c in Aduvs)
that sends (even, x) 7! (even, 0) and (odd, x) 7! (odd, 0) is equivalent to the one that sends (even, x) 7!
(even, 0) and (odd, x) 7! (even, 0), simply because (odd, 0) ⇠glue (even, 0).
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— The initial map sends x to (even, x).
— The final map sends (even, x) to x and (odd, x) to 0.
— The transition map for letter a sends (even, x) to (even, 2x) and (odd, x) to (odd, 2x).
— The transition map for letter b sends (even, x) to (odd, x) and (odd, x) to (even, x).
— The transition map for letter c sends (even, x) to (even, 0) and (odd, x) to (even, 0).

The category of gluings of vector spaces can be seen as a joint extension of the cate-
gory of sets and the category of vector spaces. This is the reason for the name “hybrid-
set-vector automaton”. This remark is made formal now:

LEMMA 4.3. The category of gluings of vector spaces restricted to gluings of 0-
dimension vector spaces is equivalent7 to the category of sets.

The category of gluings of vector spaces restricted to gluings of vector spaces with one
index only is equivalent to the category of vector spaces.

Thanks to the above lemma, we obtain that:

— deterministic automata, which are (Set, 1, 2)-automata, are also hybrid-set-vector
automata; namely the ones in which the definition of the state object does only
involve 0-dimension vector spaces),

— vector space automata, which are (Vec,K,K)-automata, are also hybrid-set-vector
automata; namely the one that have only one index in the definition of their state
object.

A categorical approach to gluing: the category Glue(Vec)

The few lines that follow require some background in category theory. However, these
are not necessary for understanding the rest of the paper.

Another approach for defining gluings of vector spaces is to consider Vec as a generic
category C, and define in categorical terms the ‘gluings of objects in C’. We name it
Glue(C).

In fact, the reader used to categorical construction knows the standard approach for
gluing objects in a category, based on the concept of a free colimit. In this view, the
category of gluings of vector spaces can be seen as a subcategory of the free cocomple-
tion of Vec. Informally, an element of the free cocompletion of Vec is an (equivalence
class of) ‘diagrams’ that describe a set of objects of C and give constraints on how these
should be ‘glued together’. However, this generic description is much less constrained
that the one we have described in the previous definition of the gluing of vector spaces.
For instance, it is possible using free colimits to take a copy of R2 and ‘glue’ together
the axis R(0, 1) and R(1, 0) (say using (0, x) ⇠ (x, 0)). Such a construction would yield a
formal object that is different than the gluings of vector spaces we are interested in.

Thus, our definition of Glue(C) does only use the diagrams that we consider ‘mean-
ingful’. It can be (informally) stated as follows:

Definition 4.4. Glue(C) is the free cocompletion of C restricted to the diagrams that
have a cocone in C, all the arrows of which are monos (or more generally in M for a
suitable class M).

The advantage of this approach is that it can be used with other categories; for
instance for constructing the category of gluings of affine spaces (i.e. Glue(Aff)) or even
gluing of sets (i.e. Glue(Set)). These categories have interest on their own, that we do
not develop in this column.

7Equivalent is the proper notion of ‘isomorphism’ for categories. Technically, it is an isomorphism ‘up to
isomorphisms of the objects’.
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4.5. The minimization of hybrid-set-vector automata
In the previous section, we introduced the concept of hybrid-set-vector automata; these
automata live in the category of gluings of vector spaces. Our motivation was to explain
how these can be minimized. In fact, we shall see that maybe these are not exactly the
automata we are interested in.

Let us recall that we had identified three ingredients for the existence of minimal
automata for a language: the existence of an initial automaton, the existence of a final
automaton, and the existence of a factorization system. Let us review what is the
status of the category of hybrid-set-vector automata for a language with respect to
these three points.

The following lemma can be proved using a more generic argument for handling
initial and final automata:

LEMMA 4.5. The category of hybrid-set-vector automata for a language has an ini-
tial and a final object.8

The more interesting part concerns the third ingredient required for having minimal
automata: the existence of a factorization system for Glue(Vec). Indeed, it has one, but
the issue is that. . . this is not what we really are looking for, as shown by the following
example:

Example 4.6. Consider the language which to a word u 2 a

⇤ associates the value
cos(↵|u|) for some ↵ which is not a rational multiple of ⇡. This can be recognized by a
vector space automaton as follows:

— the vector space of configurations is R2,
— the initial map maps x to (x, 0),
— the final map maps (x, y) to x, and
— the transition map for the letter a performs a rotation of ↵ radian of the plane R2:

it maps (x, y) to (cos(↵)x� sin(↵)y, sin(↵)x+ cos(↵)y):

↵

↵

↵

(This automaton can also be seen as a hybrid-set-vector automaton.) Now, the
Glue(Vec)-automaton obtained by minimizing (in fact, simply by restriction to the
reachable states), consists of countably many copies of the line R, all glued at 0. More
precisely,

— the state object is the gluing of vector spaces that has indices N, each vector space
Vn is R, and the gluing equivalence merges all the 0 points: (m,x) ⇠

glue

(n, y) if
m = n and x = y, or if x = y = 0,

— the initial map maps R to the vector space of index 0, i.e. it maps every xR to (0, x),
— the final map maps (m,x) to cos(↵m)x,
— and the transition maps sends (m,x) to (m+ 1, x).

8In fact, Glue(C) has all coproducts (and as a consequence all copowers), and furthermore all colimits that
C has. If C has all colimits and products, then Glue(C) also has all products (and hence all powers). If C has
all limits and colimits then Glue(C) also has them.
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It happens that this automaton is the minimal one (This automaton would still be
correct if ↵ would be a rational multiple of ⇡, but in this case, it could not be minimal).
What we see here is that this automaton is merely storing the “current rotation” in the
index part of the gluing of vector spaces of configurations.

The above example shows that minimizing without further caution leads to a prob-
lem. Indeed, we started from a perfectly valid dimension 2 vector space used for recog-
nizing a language, and after minimizing it it became an automaton that uses a count-
able union of vector spaces as configurations: something that is more difficult to handle
effectively. The answer to this problem lies in a assumption that was left unspoken so
far. We are interested only in automata involving ‘finite gluings of finite dimension
vector spaces’ only, because these are the automata that can be used algorithmically.
We get the following definition:

Definition 4.7. A gluing of vector spaces is effective if it has a finite index, and all
the vector spaces involved in its definition are of finite dimension. In the same way, the
hybrid-set-vector automata that have an effective state object are also named effective.

At the categorical level, this means to define Gluefin(C), and construct this way the
category Gluefin(Vecfin) where Vecfin is the category:

Vecfin = (finite dimension vector spaces, linear maps),
with the natural notion of composition of linear maps and identity map.
To complete the picture, it is necessary to explain how to minimize in the world of the
effective hybrid-set-vector automata. However, following the line of descriptions seen
so far, there is a problem:
— We need to use hybrid-set-vector automata in their general form, since the initial

and the final automaton, which are essential parts in the minimization arguments,
are never effective (unless the input alphabet is empty...).

— However, we want the ‘minimal automaton’ that we construct as a result of a fac-
torization to be effective.

The way to resolve this conflict is to modify in a simple and natural, yet unconven-
tional to our knowledge, way the notion of factorization system. We substitute to it
the notion of “factorization system through”. The heart of this definition is to consider
a subcategory S (that we think of as the category of small/manageable objects) of a
larger category C:

Definition 4.8. Consider a category C, a full subcategory S of C. Call S-small an
arrow f : X ! Y of C that factors through S, i.e. such that f = h � g with g : X ! Z and
h : Z ! Y for some Z object of S.

Example 4.9. Consider the category C of (Set, 1, 2)-automata, which are the deter-
ministic automata, and its subcategory S of (Setfin, 1, 2)-automata (where Setfin is the
subcategory of finite sets), which is the category of finite deterministic automata. Then
for a language L the only morphism from the initial automaton for L to the final au-
tomaton for L is S-small if and only if L is a regular language. Indeed, being S-small
in this example means exactly being accepted by a finite deterministic automaton.

If one takes the category C = Vec and its subcategory S = Vecfin, then a linear map
in C is S-small if and only if it is of finite rank.
We now introduce the refined notion of factorization through. It essentially formalizes
what it is to be a factorization system that factorizes only S-small arrows, and fur-
ther do it in S. Formally, the definition is only a slight variation around the one for a
factorization system.
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Definition 4.10. Let S be a subcategory of a category C, and ES ,MS be two classes
of arrows such that:
— all arrows in ES end in S, and
— all arrows in MS start in S,
then (ES ,MS) forms a factorization system through S if the following conditions hold,
where we denote the arrows in ES by two-headed arrows ⇣ and the arrows in MS by
⇢.
— The arrows that are both in ES and MS are exactly the isomorphisms in S.
— The ES -arrows are closed under composition.
— The MS -arrows are closed under composition.
— For all S-small arrows f : X ! Y , there exists some object Z of S, an ES -arrow

e : X ⇣ Z and a MS -arrow m : Z ⇢ Y such that
f = m � e .

This composition is called the factorization of f through S. We also refer to the
object Z as the factorization of f through S.

— For all arrows e : X ⇣ T in ES , g : T ! Y , f : X ! S and m : S ⇢ Y in MS such
that g � e = m � f , there exists one and exactly one arrow d : T ! S (of S) such
that d � e = f and m � d = g. In other words, if the following square commutes, then
there exists a unique diagonal arrow such that the resulting diagram commutes:

X T

S Y

e

f g
d

m

(4)

As can be expected, this property is also called the diagonal property, and the
unique morphism d is called a diagonal fill.

In fact, what happens is that all the proofs that we have done so far, and in particular
the existence of a minimal object, Lemma 3.5, can be adapted to this variation of the
notion of factorization system.

For instance, Lemma 3.5, becomes:
LEMMA 4.11. Let A be a category with initial object I and final object F and let

(ES ,MS) be a factorization system though a subcategory S for A. Assume furthermore
that the only arrow from I to F is S-small, and define for all objects X of S:
— MinS to be the factorization through S of the only arrow from I to F ,
— ReachS(X) to be the factorization through S of the only arrow from I to X (note that

this arrow is S-small since X is an object of S), and
— ObsS(X) to be the factorization through S of the only arrow from X to F (note that

it is S-small since X is an object of S).
Then
— MinS is (ES ,MS )-minimal (for the natural definition of it), and
— MinS , ObsS(ReachS(X)) and ReachS(ObsS(X)) are isomorphic for all objects X of S.

Now, almost all the landscape is ready. We have a class of automata, the hybrid-
set-vector automata. It has an initial and a final object according to Lemma 4.5. We
have also identified the subcategory of effective hybrid-set-vector automata for the
language. It remains to tell what are the classes ES and MS that we use for ‘factorizing
through’ (Lemma 4.11).
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Definition 4.12. The effective monos are the arrows m : X ! Y in the category of
hybrid-set-vector automata where X is effective, and |m| is injective, i.e., the map is
injective when all structure has been forgotten.

The effective extremal epis are the arrows e : X ! Y with Y effective, and such that
whenever e = m � f for some effective mono m, then m is an isomorphism.

Under this definition, we obtain the expected factorization system through.

LEMMA 4.13. (Effective extremal epis, effective monos) forms a factorization sys-
tem of the category of hybrid-set-vector automata through the subcategory of effective
hybrid-set-vector automata.

If we briefly summarize what we have, we get the following statement.

THEOREM 4.14. For all languages accepted by an effective hybrid-set-vector au-
tomaton, there exists a (effective extremal epis, effective monos)-minimal equivalent one.

In particular, the effective hybrid-set-vector automaton of Example 4.2 is minimal as
in the above theorem.

Though we do not provide more detail here on why this result holds (not to mention
the effectivity of the constructions), let us emphasize that it relies crucially on the
following statement:

In a finite dimension vector space E, for every set X ✓ E, there exists a
finite union of vector spaces F ✓ E such that X ✓ F and which is minimal
for inclusion.

This statement is not difficult to establish. At any rate,
it gives a good intuition of what is happening.
At the very beginning, we have introduced the vector
space automaton A

vec

that accepts the language L

vec

.
Its state space is R2. However, starting, say, from (1, 0),
we can draw all the configurations that are reachable
by applications of the transition maps associated to the
letters. We obtain the picture to the right.

Now, we can apply the above statement: there is a least finite union of subspaces
that covers the red points. Indeed, it consists of the union R(0, 1) [ R(1, 0). If now, we
forget the fact that these two dimension 1 vector spaces are subspaces of R2, then what
remains is a union of two copies of R that are glued at 0. This is how one obtains the
automaton of Example 4.2.

5. DISCUSSION: AUTOMATA AND CATEGORY THEORY
The idea of using category theory to provide a unifying framework for automata theory
and linear systems of control theory goes back all the way to the late sixties, and ever
since there has been a substantial body of research on this topic. Perhaps it is not a
coincidence, that Samuel Eilenberg, one of founders of the field of category theory is
also the author of the influential automata theory books [Eilenberg 1974; Eilenberg
1976], which axiomatise (without using category theory!) the algebraic approach to
automata theory and provide among others his celebrated variety theorem.

On the other hand, cutting-edge research in automata theory relies at times on com-
binatorial aspects, which seem difficult, if not impossible, to explain in a generic set-
ting. The purpose of this column is to convince people coming from the combinatorial
background, and who have not been previously exposed to category theory, that the
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conceptual view point is not just an idle exercise in abstract nonsense, and that some-
times it can lead to new interesting combinatorial problems.

As a disclaimer, it was not our intention to provide an exhaustive survey of the
interplay between automata and category theory, nor of the huge literature on this
very topic. But we feel necessary to highlight some contributions and perspectives.

Early days: Machines in a category. Already in the late 60s, Eilenberg and
Wright [Eilenberg and Wright 1967] gave a generalised notion of language recogniz-
ability in categories of algebras and formulated their results in terms of Lawvere’s
algebraic theories, the back then fresh approach to categorical algebra. A couple of
years later, Arbib and Manes further advanced the category-theoretic unification of
sequential machines and linear systems of control theory in a series of seminal pa-
pers [Arbib and Manes 1975; Arbib and Manes 1974a; Arbib and Manes 1974b]. One
of their contributions was the connection between minimization and factorization sys-
tems, as well as an account of the duality between reachability and observability in
this setting, building on the work of Kalman on linear systems [Kalman 1963]. In
parallel, Goguen [Goguen 1972] also developed a theory of minimal realization in the
setting of monoidal closed categories. A nice survey of these early developments can be
found in [Arbib and Manes 1980].

Automata as algebras for a functor. Arbib and Manes advanced the view of sequen-
tial machines and linear systems as algebras for a functor, although they adopted a
different terminology in those early papers (algebras for a functor were called dy-
namorphisms). In this setting, the transition map is captured as an algebra for a
functor F , that is a map of the form � : FQ ! Q. For example, for deterministic fi-
nite automata on a finite alphabet A, we would use the functor F : Set ! Set given by
FX = A⇥X. This approach was further developed in the work of the Prague seminar
on General Mathematical Structures by Věra Trnková, Jiři Adámek, Jan Reiterman,
Václav Koubek, see for example the book [Adámek and Trnková 1989] and the refer-
ences therein. These works explore free algebras for finitary functors, existence and
universality of minimal realisations, as well descriptions of languages via rational op-
erations. In particular [Adámek and Trnková 1989, Theorem III.2.14], similar in spirit
to the developments we presented in Section 3.3, establishes sufficient conditions for
the existence of minimal realization via factorization systems for automata modeled
as algebras for coadjoint functors preserving epimorphisms.

Yet, automata are not entirely modelled as algebras. The initial state can be in-
corporated in the type of the functor, but specifying the final states is outside the
realm of algebra. For example, for deterministic finite automata, one can consider
the functor given by FX = 1 + A ⇥ X. Formally a deterministic finite automaton is
a map [i, �] : 1 + A ⇥ Q ! Q, plus the characteristic function of the subset of final
states f : Q ! 2.

Automata as coalgebras for a functor. Alternatively, one could model deterministic
finite automata as maps of the form hf, �i : Q ! 2 ⇥ Q

A obtained by pairing the char-
acteristic function of the subset of accepting states and the map � : Q ! Q

A, obtained
from the transition map � via currying. The map hf, �i is an example of a coalgebra for
the functor G : Set ! Set, defined by GX = 2 ⇥X

A, however, in this framework, it is
the initial state which is left out.

The view of automata (and more generally of systems) as coalgebras was put for-
ward in the work of Rutten and Jacobs, see [Jacobs and Rutten 1997] and [Rutten
2000]. However, the roots of coalgebras in computer science go back to the work of
Aczel and his insights into the coinductive nature of Milner-Park notion of bisimula-
tion from concurrency theory. The coalgebraic view of automata, and the connections
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to other fields of computer science proved surprisingly useful. An example of a success
story is the work of Bonchi and Pous [Bonchi and Pous 2013], which gives an efficient
algorithm for deciding language equivalence for non-deterministic finite automata, us-
ing enhancements of the coinductive proof techniques (the so-called up-to techniques)
and drawing on previous developments from concurrency theory.

The coalgebraic method (along with the numerous contributions in this research
area) was described in the Semantics Column of a previous SIGLOG news issue [Silva
2015] and was illustrated by giving a category-theoretic account of Brzozowski’s mini-
mization algorithm. Which brings us to...

Minimization. A dual narrative: algebra vs. coalgebra. Automata minimization was
understood both algebraically at different levels of generality, (as in the work of Ar-
bib and Manes, Adámek and Trnková, etc.), as well as coalgebraically, see for exam-
ple [Adámek et al. 2012; Bonchi et al. 2012]. Notably, [Bonchi et al. 2012] carries out
an elegant study of minimization algorithms for linear weighted automata from a coal-
gebraic viewpoint.

The interplay between these two views of automata, both as algebras and as coalge-
bras, was fully exploited in [Bonchi et al. 2014] to give a category-theoretic account
of Brzozowski’s minimization algorithm. The paper [Rot 2016] showcases the con-
nection between two approaches to minimization (either by partition refinement or
reverse-determinisation)—one involving an initial algebra construction, the other a
final coalgebra construction. The deep connection between minimization and duality
theory were also investigated in [Bezhanishvili et al. 2012].

We should mention in passing that duality theory plays a fundamental role in lan-
guage theory on aspects related to recognition (see [Gehrke et al. 2008; Gehrke et al.
2010]), and, coincidentally, this is also featured in this issue, in the Complexity column.
These works were the starting point of the ERC project DuaLL which made this col-
laboration possible. In the same spirit, the recent paper [Gehrke et al. 2017] explores
other ideas from category and duality theory for tackling problems in language theory.

5.1. Beyond that point
In this column, we have attempted to show how category theory gives an insight into
the nature of automata and the questions of minimization. These facts are well known
for decades, though we adopted a presentation which we believe to be simpler and
more direct. There are many continuations of this description that could be followed
from that point, and space does not permit it.

5.2. Automata as functors
For the category-theoretic minded readers, we would like to emphasise some aspects of
the approach described here. In this subsection we will assume more category-theoretic
background on the part of the reader.

Although we haven’t mentioned this explicitly thus far, our view of automata is nei-
ther algebraic, nor coalgebraic, but a “combination” of the two. Formally, we view au-
tomata as functors

A : I ! C
where I is a category of inputs and C is the category which specifies the universe
of output values. For example, for word automata, the category I has three objects
in, states and out, and for each w 2 A

⇤, arrows .w : in ! states, w/ : states ! out and
w : states ! states, generated from the arrows pictured below, so that w

0 � w is defined
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as the concatenation ww

0.

in states out

.

a

/

DETERMINISTIC AUTOMATA
A deterministic automaton is obtained
by instantiating C to Set and considering
functors that map in to 1 and out to 2.

VECTOR SPACE AUTOMATA
A vector space automaton is obtained
by instantiating C to Set and consider-
ing functors that map both in and out to K.

In this approach, a language on words can be seen as a functor L : O ! C from the
full subcategory O of I on objects in and out

in out ,

.w/

the arrows of which are .w/ : in ! out for all w 2 A

⇤. We denote by ◆ : O ! I the
inclusion of the category O in I. An automaton A accepts the language L if

A � ◆ = L

DETERMINISTIC AUTOMATA
A language accepted by a deterministic
automaton is a functor

L : O ! Set

mapping in to 1 and out to 2.

VECTOR SPACE AUTOMATA
A language accepted by a vector space au-
tomaton is a functor

L : O ! Vec

mapping both in and out to K.

It is easy to see that in these cases, we retrieve the running examples discussed in
Section 2. If the category C has countable products and coproducts, then the existence
of the initial and final automaton accepting a given language can also be explained in
terms of more generic category-theoretic constructions (left and right Kan extensions).
In the process of writing this paper, we discovered that a similar approach based on
Kan extensions, was considered in an old (and seemingly forgotten) paper of Bain-
bridge [Bainbridge 1974].

In this framework, we can obtain new automata models by varying the input and
the output categories, I, respectively O. For example, the hybrid-set-vector automata
of Section 4 are obtained by instantiating C with Glue(Vec) and Gluefin(Vecfin).

Syntactic algebras. In a recent paper [Bojańczyk 2015], Bojańczyk considered lan-
guages recognised by monads and described syntactic algebras in this setting. By tun-
ing the input category I so that the algebraic structure at issue is hard-wired in the
morphisms of I, we obtain a unifying view of syntactic algebras and minimization.

Tree automata. For handling tree automata, it is necessary to possess a way to de-
scribe ‘maps’ of several arguments. Of course in the category Set of sets we can just
use the cartesian product. But in Vec one has to use the tensor product instead. More
generally, the right setting for this is to use monoidal categories. These are categories
equipped with a ‘bifunctor’ ⌦ called the tensor product that satisfies sufficiently many
properties for allowing to aggregate several objects into one in a ‘category-meaningful
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way’. The results of minimization as described in this column can be mimicked in this
generalised context. In particular, hybrid-set-vector automata extend to this tree au-
tomata.

Enriched forms of automata. Another extension that is important to consider is
when the alphabet also possesses some structure. For instance, one could imagine that
the alphabet is infinite and computations are meant to be permutation-invariant, as in
nominal automata [Bojańczyk et al. 2014]. Again, we can choose the category I so that
the additional structure (e.g. permutation-invariance) is captured by its structure. In
this way one can retrieve minimization results for the resulting automata model.
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Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. 2014. Automata theory in nominal sets. Logical
Methods in Computer Science 10, 3 (2014).
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COMPLEXITY COLUMN
NEIL IMMERMAN, University of Massachusetts Amherst
immerman@cs.umass.edu

Computational Complexity Questions, such as trying to prove that the NP-complete
problem three colorability of graphs (3COLOR) cannot be checked in polynomial time,
seemed deceptively simple when I first encountered them as a grad student in the
1970’s. So many years later, we still don’t even know whether 3COLOR is in the uni-
form circuit class ACC0

6, or equivalently, whether it is expressible in first-order logic
with sum mod 6 quantifiers and numeric relations +, ⇤.

Down at the Regular Language level, we know a great deal. In particular, we have
algebraic equations which provide decision procedures for whether or not a given lan-
guage is a member of certain classes of regular languages.

Mai Gehrke and Andreas Krebs give us here a readable introduction to Stone Du-
ality – the theory behind those magical equations. They explain a program towards
using these topological and algebraic methods towards generating equations which
might help us decide which problems are in AC0 and ACC⇤. Can we use Stone Du-
ality to characterize the power of first-order quantifiers – in the presence of numeric
relations? Read this column to find out.
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Stone duality for languages and complexity1

Mai Gehrke Andreas Krebs
CNRS & University Paris Diderot – Paris 7 University of Tübingen

1. INTRODUCTION
Complexity theory and the theory of regular languages both belong to the branch of
computer science where the use of resources in computing is the main focus. However,
they operate at different levels. While complexity theory seeks to classify computa-
tional problems by resource use, such as space and time, regular language theory re-
mains at the very base of this hierarchy and is concerned with classes of computational
problems for which membership is (potentially) decidable.

The theory of regular languages has a highly sophisticated topo-algebraic theory
developed over the past 50 years. Over the past decade, it has been observed that
this theory is in fact a special case of the Stone duality theory applied in semantics,
and this makes a generalisation to the setting of language classes from complexity
theory possible. This column provides a tailor-made introduction to Stone duality and
describes a program and the potential first goals of such a program of generalisation
and application in Boolean circuit complexity.

Algebraic automata theory.
The theory of regular languages and automata is an original computer science topic
with a rich theory and a wide and still growing range of practical and theoretical ap-
plications. The availability of sophisticated mathematical tools from algebra and topol-
ogy is one of the main strengths of the classical framework. Finite algebras were intro-
duced into the theory early on by Myhill, Nerode and Rabin and Scott, and their power
was established by Schützenberger’s effective characterisation of star-free languages
by means of their syntactic monoids [Schützenberger 1965]. Syntactic monoids provide
an abstract and canonical notion of recognition for regular languages and Eilenberg’s
theorem [Eilenberg 1976] supplies a general framework in which to apply the strat-
egy of Schützenberger’s result by characterising those classes of regular languages

1This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No.670624) and from the DFG Emmy
Noether program (KR 4042/2). The authors also thank the Simons Institute for the Theory of Computing
where this contribution was initiated.
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for which the corresponding class of monoids is a pseudo-variety, i.e., is closed under
homomorphic images, subalgebras, and finite Cartesian products. The success of the
algebraic methods was greatly augmented by the introduction in the 1980s of profinite
monoids [Pin 2009; Almeida 2005; Weil 2002]. Profinite algebra is required for recog-
nition of classes of regular languages. A most powerful combination in this setting is
that of Eilenberg’s and Reiterman’s theorems. Reiterman’s theorem is a generalisation
of Birkhoff ’s Variety Theorem from universal algebra. It states that pseudo-varieties
of finite algebras are precisely the ones given by profinite equations [Reiterman 1982].
Thus Eilenberg-Reiterman theory allows the equational description of certain classes
of regular languages and, in cases where researchers have found finite equational
bases, this leads to decidable criteria for membership in the corresponding classes.
Given the success of the method, the search for generalisations applicable to more
general classes of regular languages and closely related objects has been very active.

Tools and separation results for Boolean circuit classes.
There are very few separation results in complexity theory. The most well-known
question is whether non-deterministic polynomial time Turing machines have more
computational power than deterministic polynomial time Turing machines, or simply
P 6= NP? There are numerous complexity classes besides the two classes P and NP,
e.g.: PSPACE,NP,P,NC,TCk,ACCk,ACk,NCk,NL, and L. The definitions of all these
classes and many more can be found in any current textbook. Yet the number of com-
plexity classes is outnumbered by the open questions about their relations: P vs. NP,
NL vs. L, P vs. NL, to name only a few. Many attempts to directly attack these questions
have failed over the last 40 years.

We will focus on the few places where separations are known. Furst, Saxe, and
Sipser [Furst et al. 1984] showed in 1981 by a combinatorial and stochastic argu-
ment that the language PARITY, consisting of all bit words with an odd number of 1s,
is not in AC0. AC0 is a circuit complexity class, that is, its members are specified by
sequences of Boolean circuits, one for each input length, identifying which words of the
given length are accepted. For each n, ACn is the class of languages given by families
of Boolean circuits for which the size of the circuits is polynomial in the length of the
input word and the depth of the circuit is of order logn in the length of the word. The
class AC is the union of the hierarchy ACn over all n. The ACC hierarchy is obtained
by adding gates that can count modulo q for each q. Clearly PARITY is in ACC0, so the
result of Furst, Saxe, and Sipser separates AC0 from ACC0. However, the class ACC0

has not been separated from anything all the way up to NP. We have the following
chain of inclusions:

PSPACE > NP > P > AC . . . > AC2 > AC1 > NL > L > ACC0 > AC0

where L stands for logarithmic space. We do know that PSPACE strictly contains AC,
but we do not even know that NP 6= ACC0.

So while many separations are known and algebraic and topological tools are avail-
able for formal language classes inside the regular languages, complexity classes are
missing such tools or even more general patterns of how to understand relations be-
tween them.

One connection that is available in this setting is through logic: most computational
complexity classes have been given characterisations as finite model classes of appro-
priate logic fragments [Immerman 1999]. For example,

AC0 = FO[N ] and ACC0 = (FO +MOD)[N ] (1)
where N is the set of all numerical predicates, FO is usual first-order logic, and MOD
stands for the modular quantifiers MOD

q

(one for each remainder), which count the
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number of true instances (in a finite word) of a formula modulo q. The presence of
arbitrary numerical predicates is what brings one far beyond the scope of the profinite
algebraic theory of regular languages.

In [Behle and Lange 2006] it was shown that logic classes like FO[<] and FO +
MOD[<] correspond to ‘very uniform’ constant depth circuit classes. Hence the differ-
ence in our knowledge varies rapidly when one moves to less uniform circuit classes.
While [<] and mostly also [<,+] uniform circuit classes are somewhat understood, little
is known for [<,+, ⇤] or for non-uniform circuit classes. Non-uniform circuit classes can
use a completely different circuit to recognise the set of words of each length, without
any connection between the circuits used for different lengths.

Most results in the field are proved using combinatorial and probabilistic, as well as
algorithmic methods [Williams 2014]. However, there are a few connections with the
topo-algebraic tools of the theory of regular languages. A famous result of Barrington,
Compton, Straubing, and Thérien [Barrington et al. 1992] states that a regular lan-
guage belongs to AC0 if and only if its syntactic homomorphism is quasi-aperiodic. Al-
though this result relies on [Furst et al. 1984] and no purely algebraic proof is known,
being able to characterise the class of regular languages that are in AC0 gives some
hope that the non-uniform classes might be amenable to treatment by the generalised
topo-algebraic methods.

Indeed, the pseudo-variety of quasi-aperiodic quotient maps, or so-called quasi-
aperiodic stamps, has been characterised in terms of profinite identities by Kunc [Kunc
2003]. Combining [Barrington et al. 1992] and [Kunc 2003] one gets

AC0 \ Reg = J (x!�1y)!+1 = (x!�1y)! for x, y words of the same length K (2)

where the ! power of an element in a compact semigroup is the unique idempotent in
its cyclic closure. This result is useful because the equations can easily be checked in a
finite monoid while being in AC0\Reg is difficult to show otherwise (see Example 2.20
for an explanation of how this equational characterisation shows that AC0 \ Reg is
decidable). In addition, the algebraic properties of the quasi-aperiodic stamps are well
understood as they are essentially obtained as Mal’cev products of aperiodic monoids
by cyclic groups [Pin and Straubing 2005], with additional restrictions on the allowed
recognising morphisms. On the logic side this gives the formula

FO[N ] \ Reg = FO[Reg]. (3)

The situation is analogous for ACC0 \ Reg and (FO+MOD)[Reg]=(FO+MOD)[<] and
Straubing [Straubing 1994] has conjectured similar formulas for the classes ACC

q

, for
which only gates modulo a single q are allowed. However, in the case of ACC0, the
circuit complexity question whether ACC0 is strictly contained in NC1, is a long-open
problem.

Now the idea how the generalised topo-algebraic theory might help separate com-
plexity classes goes as follows: The hope is that one can generalise the tools of algebraic
automata theory and thus be able to obtain equational characterisations of the logic
fragments corresponding to Boolean circuit complexity classes. With these equations
in hand, the goal is of course not decidability as in the regular setting but simply sep-
aration. Thus, the second hope is that one can show that there exists a language in the
bigger fragment and there exists an equation which is not satisfied by that language
but which is satisfied by all languages in the smaller fragment.

Now we discuss why we think these two goals might be achievable: Combining (1),
(2), and (3), we have

FO[Reg] = J (x!�1y)!+1 = (x!�1y)! for x, y words of the same length K. (4)
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That is, a certain logic fragment is given by certain equations. This is the kind of result
where both sides of the equation are well within the natural scope of Stone duality,
namely the dual space of a Boolean algebra corresponding to a certain logic fragment
is given as a quotient of a bigger space (we will explain in Section 2.5 how equations
relate to quotient spaces). What we are looking for is a result of the form

FO[N ] = J E K
for some set E of appropriate equations, and the strategy for discovering and proving
such a result should be the same as for (4). Note that while the proof of (2) depends on
[Furst et al. 1984], language theorists can prove (4) directly.

To form the class FO[Reg], one starts with the numerical predicates Reg and applies
inductively layers of quantifiers (and Boolean closure). Obtaining a result such as (4)
relies on an understanding of the effect on recognisers of closing under a layer of quan-
tifiers and then on understanding how this affects the equational characterisation of
the corresponding class. In the regular setting both of these steps are well understood.
The effect on recognisers of closing under a layer of quantifiers is governed by various
semidirect product constructions such as the block product (see [Tesson and Thérien
2007] for a nice introduction). The effect on, first the recognising space, and then the
equations, of taking block products has been worked out in a number of special cases
within the regular setting over the past 30 to 40 years and the papers [Almeida and
Weil 1995] and [Almeida and Weil 1998], respectively, give general tools for solving
these problems within the regular setting. Thus our task is to discover the appropriate
generalisations of block product (and some results have been achieved in [Behle et al.
2011; Gehrke et al. 2016; Gehrke et al. 2017]), and then to generalise the results of
[Almeida and Weil 1995] and [Almeida and Weil 1998] (at least in particular cases).

Even if all this works out, there is still the issue whether such equations can be
used to separate the corresponding classes. The reason for optimism here is that, as
mentioned above, one just needs to find one language and one equation that do the job
(in Section 3, we give a ‘proof of concept’ example, and show in particular that PARITY
does not satisfy one of the equations characterising the logic fragment treated there,
see Example 3.11). We can now sum up what our goal is.

Research goal
We want to develop a topo-algebraic theory beyond regular languages with the ulti-
mate goal of obtaining new tools and separation results for Boolean circuit classes.
The first major goal in this direction is the challenge of giving a duality theoretic proof
of an analogue of (4) without intersecting with Reg and using this result to give a new
proof of the Furst, Saxe, and Sipser result.

Plan of the column
In Section 2 we provide an introduction to Stone duality tailored to the study of
Boolean algebras of languages. After a historical overview of Stone duality and its
applications in theoretical computer science, we start in Section 2.2 with the duality
for finite Boolean algebras (and a slight generalisation of this non-topological duality).
As examples, we treat

— Classical Propositional Logic (CPL) on a finite set of variables, showing how duality
yields/is tantamount to the familiar truth-value semantics for CPL;

— The syntactic monoid of a regular language, which may be seen as the dual space of
the Boolean algebra closed under algebraic quotient operations that it generates.

In Section 2.3 we introduce the full-fledged Stone duality for arbitrary Boolean alge-
bras. We introduce the notion of syntactic space of a non-regular language, which is a
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so-called Boolean space with an internal monoid and use Stone duality to generalise
the notion of recognition from regular languages to non-regular ones. As examples, we
treat

— Classical Propositional Logic (CPL) on an infinite set of variables, showing how the
Stone dual space is the well-known Cantor space;

— The syntactic space of the non-regular language MAJORITY;
— The dual space of the powerset P(A⇤) of a finitely generated free monoid equipped

with the biaction of A⇤ by quotienting operations. This so-called Boolean space with
an internal monoid plays the same role for not-necessarily-regular languages as the
free profinite monoid over A plays in the algebraic theory of regular languages. In
particular, the equations used for separation of classes of languages are between
elements of this space.

In Section 2.4 we give an alternative view of Boolean spaces as profinite sets. In the
case of profinite monoids, this leads to the fact that one can study profinite monoids
by means of systems of finite ones, such as pseudo-varieties of finite monoids. Here we
generalise this notion, which leads to the notion of typed monoid and pseudo-varieties
of typed stamps.
In Section 2.5, we consider Stone duality for subalgebras and quotient spaces and show
how this leads both to the notion of profinite equations in algebraic automata theory
and a similar notion of �-equations which is pertinent to the study of not-necessarily-
regular languages. As examples we treat:

— The meaning and intuition behind the profinite equations for AC0 \Reg given in (2);
— A full proof of a simple equational characterisation of the languages recognised by

the syntactic space of the language MAJORITY via its syntactic morphism relative to
the monoid (Z,+), which is the (classical) syntactic monoid of this language.

Section 3 treats a first example of the theory in action, namely that of FO1[N0,N uni

1 ],
which was the subject of [Gehrke et al. 2016]. However here we show how this example
is a blueprint for the road to follow in treating more complex classes. Finally, Section 4
gives some perspectives on the future research we envisage as well as its goals.

2. STONE DUALITY
2.1. Historical background
Dualities between algebraic and topological structure are pervasive in mathematics,
and toggling back and forth between algebraic and spacial reasoning has often been as-
sociated with important breakthroughs. Our objective here is to outline some ideas for
how Stone duality may be applied in the theory of Boolean circuit complexity classes.

In 1936, M. H. Stone initiated duality theory in logic by presenting a dual category
equivalence between the category of Boolean algebras and the category of compact
Hausdorff spaces having a basis of clopen sets, so-called Boolean spaces [Stone 1936].
Stone’s duality and its variants are central in making the link between syntactical and
semantic approaches to logic. Also in theoretical computer science this link is central
as the two sides correspond to specification languages and to spaces of computational
states. The ability to translate faithfully between these two worlds has often proved
itself to be a powerful theoretical tool as well as a handle for making practical prob-
lems decidable. A prime example is Abramsky’s seminal work [Abramsky 1991] linking
program logic and domain theory via Stone duality. Other examples include Esakia’s
duality [Bezhanishvili (Ed.) 2014] for Heyting algebras and the corresponding frame
semantics for intuitionistic logic, Goldblatt’s seminal work [Goldblatt 1989] identifying
extended Stone duality as the setting for completeness issues for Kripke semantics in
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modal logic, and Ghilardi’s work in modal and intuitionistic logic on unification [Ghi-
lardi 2004] and normal forms [Ghilardi 1995]. Applications of Stone duality in logic
and computer science generally need more than just basic Stone duality. For example,
Abramsky’s work needs Stone or Priestley duality for distributive lattices and appli-
cations in modal logic require a duality for Boolean algebras or distributive lattices
endowed with additional operations. Dualities for additional operations originate with
Jónsson and Tarski who studied duality in the form of canonical extensions. Dual-
ity for additional operations was later reformulated in purely duality theoretic terms
in [Goldblatt 1989] in the setting of Priestley duality. Stone and Priestley duality for
Boolean algebras and distributive lattices with various kinds of additional operations
are often referred to as extended duality. In computer science applications in seman-
tics, additional operations (or connectives) play an important role and extended duality
has been extensively developed both in the form of canonical extension theory [Gehrke
and Jónsson 2004; Gehrke et al. 2005], and in coalgebraic form [Venema 2006].

In contrast, Stone duality has not played a role in more algorithmic areas of theoret-
ical computer science until recently. Profinite topology is a central tool in the algebraic
theory of automata [Almeida 2005] and, as was observed as early as 1937 by Birkhoff,
profinite topological algebras are based on Boolean spaces. However, the connection
was not used until much more recently, first, in an isolated case by Pippenger [Pip-
penger 1997], and then more structurally starting in [Gehrke et al. 2008; Gehrke et al.
2010]. In Chapter 8 of their 2009 book, Rhodes and Steinberg introduced a bialgebraic
and duality-theoretic approach to profinite semigroups [Rhodes and Steinberg 2009].
This point of view identifies deep connections with classical algebra.

2.2. Discrete duality
It is easiest to understand Stone duality by first understanding the non-topological
part. At the finite level, there is no need for topology, and Stone duality is simply the
fact that the category of finite Boolean algebras is equivalent to the opposite of the
category of finite sets. In symbols

BA
f

⇠= Set
f

op.

Given a finite Boolean algebra B, the corresponding set is At(B), the set of atoms of
B. A non-zero element a 2 B is an atom provided, for any b 2 B, either a ^ b = a or
a^ b = 0. That is, on the induced order on the Boolean algebra, a is immediately above
the bottom element. Conversely, given a finite set X, the powerset P(X) is a finite
Boolean algebra. Further, going back and forth gives back an isomorphic copy of the
original object. That is

B ⇠= P(At(B)) and X ⇠= At(P(X)).

The fact that BA
f

is equivalent to the opposite of Set
f

has to do with maps. Let A and B
be finite Boolean algebras and X and Y their duals. Given a homomorphism h : A ! B
and a set map f : Y ! X, these are dual to each other provided

8a 2 A 8y 2 Y y 6 h(a) () f(y) 6 a.

In particular, this means that, starting from a set map f : Y ! X, the dual homomor-
phism is the preimage map on the powersets, f�1 : P(X) ! P(Y ).

This non-topological duality does not work for all Boolean algebras, but it does work
for all complete and atomic Boolean algebras (CABA). These are Boolean algebras in
which all suprema and infima exist, and in which the atoms separate the elements.
The same definitions as given above actually show that

CABA ⇠= Setop.
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We provide a few examples.
Example 2.1 (Classical propositional logic on finitely many primitive propositions).

Let P be a finite set of primitive propositional variables. Then, up to logical equiva-
lence, the propositional formulas in these variables form a Boolean algebra, CPL

P

.
The atoms of this Boolean algebra are all the complete conjunctions of literals. That
is, they are in one-to-one correspondence with valuations, v : P ! 2, where p occurs
positively if v(p)=1 and negatively otherwise. That is, At(CPL

P

) ⇠= 2P . Disjunctive
normal form tells us that each element of CPL

P

can be written uniquely as a disjunc-
tion of complete conjunctions. That is, there is a one-to-one correspondence between
the elements of CPL

P

and the subsets of 2P . This is simply a case of the Stone duality

CPL
P

⇠= P(At(CPL
P

)) ⇠= P(2P ) ⇠= 22
P

.

Example 2.2 (The syntactic monoid of a regular language). In this example we
show how the syntactic monoid of a regular language may be obtained by discrete
duality. The argument is given in a form which generalises to the non-regular setting,
see [Gehrke et al. 2010; Gehrke et al. 2016] and especially [Gehrke et al. 2017], where
this example is treated in the introduction.

Let L be a regular language over a finite alphabet A. Consider the Boolean subalge-
bra B(L) of P(A⇤) generated by the quotients of L, i.e. by the sets

w�1Lv�1 = {u 2 A⇤ | wuv 2 L}
for w, v 2 A⇤. Since the language L is regular, it is the set of all words recognised by
some finite state automaton (Q,A, �, I, F ). Notice that the language w�1Lv�1 is recog-
nised by (Q,A, �, I

w

, F
v

), where I
w

is obtained by moving forward along transitions
from an initial state by any path labelled by w, while F

v

is obtained by moving back-
wards along transitions from a final state by any path labelled by v. As a consequence,
the seemingly infinite generating set for B(L) is actually finite, and so is the Boolean
algebra B(L).

By the discrete duality, the embedding B(L) ,! P(A⇤) is dual to a surjective map
A⇤ ⇣ At(B(L)). That is, the subalgebra B(L) corresponds dually to an equivalence
relation on A⇤ ⇥A⇤ given by the equivalence classes

[u] =
\

wuv2L

w�1Lv�1 \
\

wuv/2L

(w�1Lv�1)c

for u 2 A⇤, which are also the atoms of B(L). These are the equivalence classes of the
Myhill syntactic congruence of L, ⇠

L

, and thus the elements of the syntactic monoid
M

L

of L.
However, this does not account for the monoid structure on M

L

via duality, just for
its set of elements. In order to explain the monoid structure via duality, notice first
that the left quotient operation by a word, S 7! w�1S, on P(A⇤) is a homomorphism of
complete and atomic Boolean algebras, which is dual to the left action of w on A⇤ given
by left concatenation of w since

8S 2 P(A⇤) 8u 2 A⇤ u 2 w�1S () wu 2 S.

In diagrammatic form, we have the following duality of maps for each w 2 A⇤:

P(A⇤) P(A⇤) A⇤ A⇤.

S w�1S v wv

⇤w lw

Also, the fact that
A⇤ ⇥A⇤ ! A⇤, (w, u) 7! wu
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is a left action of the monoid A⇤ on itself implies, by duality, that

A⇤ ⇥ P(A⇤) ! P(A⇤), (w, S) 7! w�1S

is a right action of the monoid A⇤ on the Boolean algebra P(A⇤). Of course the same
holds for the right quotients and the right action of A⇤ on itself, and the compatibility
of the two actions on A⇤ (i.e. l

w

(r
v

(u)) = wuv = r
v

(l
w

(u))) yields the compatibility
of the actions by quotienting on P(A⇤). Now recall that the Boolean algebra B(L) is
closed under the quotient operations, and thus, we have commuting squares as the
left one in the following diagram

B(L) P(A⇤) A⇤ M
L

B(L) P(A⇤) A⇤ M
L

⇤w ⇤w lw �w

Thus one obtains a left action of A⇤ on M
L

. By a similar argument, the closure of
B(L) under the right quotient operations yields a right action of A⇤ on M

L

. And the
compatibility of the two actions follows from the compatibility of the actions on B(L).
Finally, the fact that the embedding B(L) ,! P(A⇤) is a morphism for the biaction of
A⇤ implies by duality that the quotient map A⇤ ⇣ M

L

is a morphism for the biaction of
A⇤. One can show that this is equivalent to saying that M

L

carries a monoid operation
making the quotient map A⇤ ⇣ M

L

a monoid morphism (one defines x · y = �
w

(y)
where x = [w]).

2.3. Stone duality for Boolean algebras
All finite Boolean algebras are atomic as are some infinite ones, powersets for exam-
ple. However, there are infinite Boolean algebras that do not have enough atoms to
separate their elements. In fact there are atomless Boolean algebras (e.g., CPL

P

for
infinite P , see Example 2.5 below).

Thus in order to obtain representations of arbitrary Boolean algebras in powersets,
we need to generalise the concept of atom. Just as ideals generalise divisors in rings,
so ultrafilters generalise atoms in Boolean algebras.

Definition 2.3. A subset F of a Boolean algebra A is a filter provided

— F is an up-set, i.e., a2F and a 6 b implies b2F ;
— F is non-empty, or equivalently, 12F ;
— F is closed under finite meets i.e., a, b2F implies a ^ b2F .

A filter is said to be proper provided F 6= A, or equivalently, 0 /2 F . Further, a proper
filter F is an ultrafilter provided

— For all a2A either a or ¬a belongs to F .

We denote by Ult(A) the set of all ultrafilters of A.

Ultrafilters are in one-to-one correspondence with the set BA(A, 2) of Boolean alge-
bra homomorphisms from A into the two-element Boolean algebra, 2.

PROPOSITION 2.4. Let A be a Boolean algebra and F✓A. The following conditions
are equivalent:

(1) F is an ultrafilter;
(2) The characteristic function �

F

: A! 2 is a homomorphism of Boolean algebras.
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Example 2.5 (Classical propositional logic on countably many propositional variables).
We claim that CPL

P

for P an infinite set of primitive propositional variables has
no atoms at all: Given any consistent propositional formula ', and any primitive
propositional variable p that does not occur in ', the formula ' ^ p is still consistent
but is not equivalent to '. This shows that no formula ' can be an atom.

Let’s explore then what the ultrafilters of this Boolean algebra, or equivalently, the
homomorphisms from CPL

P

into 2 are. Any function v : P ! 2 extends to a homo-
morphism ṽ : CLP

P

! 2 (by structural induction, or equivalently, since CPL
P

is the
free Boolean algebra over P ). Thus, as in the case of P finite, the set of ultrafilters
corresponds to the set of all valuations v : P ! 2.

Further, we see easily that CPL
P

can be embedded in 2P : Any two formulas ', use
only a finite subset P 0 of the propositional variables and they can be separated by a
complete conjunction relative to P 0, and thus by a valuation v : P 0 ! 2. It follows that
' and  can be separated by any valuation v0 : P ! 2 extending v.

Thus the map

CLP
P

! P(2P ),' 7! b' = {v : P ! 2 |

0

BB@
^

p2var(')
v(p)=1

p

1

CCA ^

0

BB@
^

p2var(')
v(p)=0

¬ p

1

CCA 6 '},

where var(') denotes the set of propositional variables that occur in ', is an embedding
of Boolean algebras. On the other hand, it is clear that this map cannot be surjective
since the cardinality of CLP

P

is equal to the cardinality of P , while even 2P and thus
certainly also P(2P ) have strictly larger cardinalities.

However, the sets

bp = {v 2 2P | v(p) = 1} and c¬ p = {v 2 2P | v(p) = 0}

are the subbasic open sets of the product topology on 2P when we equip 2 with the
discrete topology, and the set {b' | ' 2 CPL

P

} is the closure of this subbasis under
finite intersections and unions. It is therefore a basis for the product topology. The
ensuing topological space is the well-known Cantor space, and it is not hard to see that
the b' are precisely the clopen (simultaneously closed and open) subsets of this space.

Definition 2.6. A Boolean Stone space (or just Boolean space) is a topological space
that is compact Hausdorff and that has a basis of clopen subsets.2 Given a Boolean
space X we denote by Clop(X) the Boolean algebra of clopen subsets of X equipped
with the set-theoretic operations.
Given a Boolean algebra B, its Stone dual space, denoted S(B), is the space of ultra-
filters of B (or homomorphisms into 2) equipped with the topology generated by the
sets

ba = {µ 2 Ult(B) | a 2 µ} ⇠= {h : B ! 2 | h(a) = 1}
where a ranges over the elements of B.

THEOREM 2.7 (STONE DUALITY). Let B be a Boolean algebra. Then S(B) is a
Boolean space and the map

B ! P(S(B)), a 7! ba

2The property of having a basis consisting of clopen subsets is also known as the property of being zero
dimensional.

ACM SIGLOG News 37 April 2017, Vol. 4, No. 2



is an embedding of Boolean algebras whose image is the Boolean algebra Clop(S(B)).
Further, if h : A ! B is a homomorphism of Boolean algebras, then

S(h) : S(B) ! S(A), µ 7! h�1(µ) (or in terms of homomorphisms (f :B ! 2) 7! (f�h :A ! 2))

is a continuous map with the property that S(h)�1(ba) = dh(a).
Let X be a Boolean space. Then Clop(X) is a Boolean algebra and the map

X ! S(Clop(X)), x 7! µ
x

= {U 2 Clop(X) | x 2 U}

is a homeomorphism. Further, if f : X ! Y is a continuous function between Boolean
spaces, then

Clop(f) : Clop(Y ) ! Clop(X), V 7! f�1(V )

is a Boolean algebra homomorphism with the property that Clop(f)�1(µ
x

) = µ
f(x).

In Example 2.2 we saw that the syntactic monoid of a regular language L may be seen
as the dual space of the Boolean algebra B(L) equipped with the biaction of A⇤ via
quotient operations. Now that we have dual spaces for infinite Boolean algebras as
well, we can extend the concept.

Definition 2.8. Let A be a finite alphabet and L ✓ A⇤ any language over A. The
syntactic space of L is the dual space of the Boolean algebra

B(L) = hw�1Lv�1 | w, v 2 A⇤iBA
equipped with the biaction of A⇤ by quotient operations and the syntactic morphism is
the dual of the embedding B(L) ,! P(A⇤).

As we will see, the dual space of such a Boolean algebra with a biaction may be seen
as what was called a Boolean space with an internal monoid in [Gehrke et al. 2016].
Before getting to that, we consider an example.

Example 2.9 (The syntactic space of MAJORITY). Let A = {a, b}. Consider the lan-
guage

L = {w 2 A⇤ | w contains more a’s than b’s} = MAJORITY.

Consider the unique monoid homomorphism given by

⌘ : A⇤ ⇣ Z, a 7! 1, b 7! �1.

It is not hard to see that, for all u 2 A⇤, we have that u�1L = Lu�1 and

L = ⌘�1(Z+) and Lu�1 = ⌘�1(Z+ � ⌘(u)).

Thus the Boolean algebra B = B(L) is isomorphic (via the inverse of the mapping ⌘�1)
to the Boolean subalgebra of P(Z) generated by the cosets under addition of Z+ = {n 2
Z | n > 0}. Notice also, that Lu�1 = ⌘�1(Z+ � ⌘(u)) shows that the action of A⇤ on B
factors through the action of Z on its powerset. Accordingly, we make the identification

B = hZ+ � k | k 2 Z iBA
and consider the (bi)action of Z on this Boolean algebra.

It is not difficult to see that B consists of all subsets of Z having finite or cofinite
intersection with each of Z+ or Z�. We would like to compute the dual space of B. The
points k 2 Z all give rise to points of the dual via

k 7! {K 2 B | k 2 K}.
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In this particular case, one can show that there are only two additional ultrafilters of
B, namely

+1 = {K 2 B | K4Z+ is a finite set} and �1 = {K 2 B | K4Z� is a finite set}.

Thus the dual space of B is based on the set X = Z [ {�1,+1} and the sets bK for
K 2 B are:

(1) all finite subsets of Z and their complements in X;
(2) all subsets containing +1 and not containing �1 which have cofinite intersection

with Z+ and finite intersection with Z� — and their complements in X.

The topology of X is then obtained by closing under arbitrary unions. Thus the opens
of X are the following sets:

(1) all subsets of Z;
(2) all subsets containing +1 which contain all but finitely many of the elements of

Z+;
(3) all subsets containing �1 which contain all but finitely many of the elements of

Z�.

Using this, one may then verify that the sets bK for K 2 B are exactly the clopens of
X. Finally we note that Z is a dense subspace of X and that the components of the
biaction of Z on itself extend continuously to X by setting k+x = x+k = x for all k 2 Z
and x 2 {+1,�1}.

We review what has happened in the above example. The language L = MAJORITY
is not regular and thus its syntactic monoid, Z, is infinite. The syntactic morphism,
⌘ : A⇤ ! Z, recognises uncountably many languages in P(A⇤) (all the pre-images of
subsets of Z). However, B(L) is only a countable Boolean algebra of fairly well-behaved
languages. By making a ‘two-point compactification’ X of Z, we are able to embed
B(L) in P(X) so that we can characterise the image in topological terms as the clopen
subsets. The fact that Z is a monoid, is replaced by the fact that X contains a monoid
as a dense subset and that this ‘internal monoid’ acts with continuous components on
X (see Definition 2.11 below).

Example 2.10 (The dual space of P(A⇤) equipped with the quotienting biaction of A⇤).
Let A be a finite alphabet. Since the Boolean algebras we are interested in are sub-

algebras of P(A⇤), it is important to understand Stone duality in this case. By
Definition 2.6, the dual space of P(A⇤) is the space of all ultrafilters of P(A⇤) equipped
with the topology generated by the sets bL = {µ 2 Ult(P(A⇤)) | L 2 µ} for L 2 P(A⇤).

As in the previous example, there are some easy-to-access ultrafilters, namely the
ones given by the elements of A⇤: for each u 2 A⇤, we have a principal ultrafilter:

µ
u

= {L ✓ A⇤ | u 2 L}.
In general, for a powerset Boolean algebra, the only ultrafilters which are construc-
tively available are the principal ones. However, a standard application of the Axiom
of Choice, shows that every proper filter of a Boolean algebra extends to an ultrafilter.
Alternatively, one can take this as an axiom (which is non-constructive but weaker
than AC).

This very same space comes up in a different setting in topology, namely that of
Stone-Čech compactifications. This is a free compactification. That is, given a space X

(that is nice enough to have a compactification), its Stone-Čech compactification is an
embedding of X into a compact Hausdorff space �X so that any continuous function
f : X ! Y into a compact Hausdorff space Y extends uniquely to a continuous function
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�f : �X ! Y . It is then a fact that �(A⇤), where we consider A⇤ as a space with the dis-
crete topology, is homeomorphic to the dual space of P(A⇤). For this reason we denote
this space by �(A⇤), and we often use its universal property. Note that the embedding
A⇤ ,! �(A⇤) required by the definition of the Stone-Čech compactification is given by
the inclusion of A⇤ in its dual space as the principal ultrafilters, u 7! µ

u

.
One may observe that A⇤ sits densely in �(A⇤): If bK is a non-empty basic (cl)open,

then K ✓ A⇤ must be non-empty (as all ultrafilters are proper) and thus there is a
word u 2 K. It follows that K 2 µ

u

and thus that µ
u

2 bK. Also, the monoid A⇤ which
sits as a dense subset of �(A⇤) has a biaction on the space with continuous components.
To see this, let u 2 A⇤, then left concatenation by u may be seen as a map

A⇤ ! �(A⇤), w 7! µ
uw

and, for the discrete topology on A⇤, it is continuous. Thus it has a unique extension

�
u

: �(A⇤) ! �(A⇤).

Exploiting the uniqueness, one may show that this is a left action of A⇤ on �(A⇤).
Similarly we get a right action and one can show that the two are compatible. In the
sequel, we will consider A⇤ as a subset of �(A⇤) and write things like �

u

: �(A⇤) !
�(A⇤) is given by w 7! uw.

Definition 2.11 (Boolean space with an internal monoid). A Boolean space with an
internal monoid is a pair (X,M) where X is a Boolean space and M is a dense subset
of X and a monoid so that each left component l

m

: M ! M,m0 7! mm0 and each
right component r

m

: M ! M,m0 7! m0m has a continuous extension �
m

: X ! X and
⇢
m

: X ! X, respectively.
A morphism from a Boolean space with an internal monoid (X,M) to another such,

(Y,N), is a continuous map f : X ! Y , so that f(m) 2 N for each m 2 M and the
ensuing map f | : M ! N is a monoid morphism.

All finite monoids M are Boolean spaces with internal monoids when we take X = M
and any finite Boolean space with an internal monoid is of that form. As we have shown
in Example 2.10, the pair (�(A⇤), A⇤) is a Boolean space with an internal monoid. A
topological version of the argument in Example 2.2 implies that the dual space of any
Boolean subalgebra of P(A⇤) closed under the quotienting action of A⇤ on P(A⇤) is a
Boolean space with internal monoid quotient of (�(A⇤), A⇤), see [Gehrke et al. 2016,
Section 3] for more details. We introduce some nomenclature and record the result
here.

Definition 2.12 (Recognition). Let A be a finite alphabet and L ✓ A⇤. Recall that
bL ✓ �(A⇤) is the clopen corresponding to L. A morphism of Boolean spaces with inter-
nal monoids � : (�(A⇤), A⇤) ! (X,M) is said to recognise L provided there is a clopen
U ✓ X so that ��1(U) = bL. Note that this is equivalent to L = A⇤\��1(U). Further we
say that (X,M) recognises L provided there is a morphism of Boolean spaces with in-
ternal monoids � : (�(A⇤), A⇤) ! (X,M) which does. When we restrict to finite Boolean
spaces with internal monoids we recover the classical notion of recognition.

THEOREM 2.13. Let A be a finite alphabet and B a Boolean subalgebra of P(A⇤)
closed under the quotienting action of A⇤ on P(A⇤). Then the Stone dual of B with the
action of A⇤ is a Boolean space with an internal monoid (X,M) and the Stone dual of
the embedding B ,! P(A⇤) is a surjective morphism of Boolean spaces with internal
monoids � : (�(A⇤), A⇤) ! (X,M) which recognises precisely the languages in B. In
particular, the syntactic space of any language L ✓ A⇤ is a Boolean space with an
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internal monoid which recognises L, and the syntactic morphism factors through any
other morphism of Boolean spaces with internal monoids that recognises L.

Conversely if � : (�(A⇤), A⇤) ! (X,M) is any morphism of Boolean spaces with in-
ternal monoids, then the set of all languages over A recognised by � forms a Boolean
subalgebra of A⇤ closed under the quotienting action of A⇤ on P(A⇤).

For the reader that is not familiar with the classical theory, we note that, in the special
case of Theorem 2.13 where B consists entirely of regular languages, then the operation
on the internal monoid M extends to a jointly (in both coordinates at once, i.e., in the
product topology) continuous monoid operation on the dual space X, and this profinite
monoid is the dual of B. In fact, in [Gehrke et al. 2010] it was shown that this happens
if and only if B consists entirely of regular languages.

Definition 2.12 and Theorem 2.13 tell us that the basic tools of algebraic automata
theory, namely a rich enough class of recognisers with a nice universal property, exist
also in the non-regular setting. This result was essentially the content of the paper
[Gehrke et al. 2010] but the formulation given here is as in [Gehrke et al. 2016]. As we
will see in Section 2.5, the equations that we want to use for characterising language
classes come about as generators for the equivalence relation on �(A⇤) one has to mod
out by to get the Boolean space with an internal monoid dual to the language class in
question.

2.4. Boolean spaces as profinite sets: typed monoids
Boolean spaces are exactly the profinite sets. That is, if one has a system of finite sets
{X

i

}
i2I

where I is a directed set (that is, i, j 2 I implies there exists k 2 I with i 6 k
and j 6 k) and a system of functions {f

ji

: X
j

! X
i

| i 6 j} so that f
ki

= f
ji

� f
kj

whenever i 6 j 6 k, then the limit of this system is a Boolean space — and every
Boolean space may be obtained in this way.

We elaborate a bit on this. Given a directed system ({X
i

}
i2I

, {f
ji

}
i6j

), the inverse
limit (denoted lim

i2I

X
i

), as a set, is the subset of all those sequences x 2 ⇧
i2I

X
i

so that
f
ji

(x
j

) = x
i

whenever i 6 j. The restrictions of the projection maps ⇡
j

: lim
i2I

X
i

! X
j

witness the limit in the sense that they commute with the connecting maps of the
system, that is, f

ji

� ⇡
j

= ⇡
i

whenever i 6 j. The limit as a topological space (where we
think of the finite sets as equipped with the discrete topology), is based on this same
set and equipped with the topology generated by the basis

{⇡�1
i

(S) | i 2 I and S ✓ X
i

}
(note that this is also the usual subbasis for the product topology of ⇧

i2I

X
i

). The direct-
edness of I and the compositionality of the connecting maps is used to show that this is
a basis and not just a subbasis. One can show that compact Hausdorff spaces are closed
under inverse limits within topological spaces, and the profinite limits are zero dimen-
sional since each ⇡�1

i

(S) is clopen since ⇡�1
i

(X
i

\S) is open as well. Thus profinite sets,
that is, inverse limits of finite sets, are Boolean spaces. Conversely, given a Boolean
space X and any partition P = {U1, . . . , Un

} consisting of clopens, the corresponding
quotient map is a continuous map to a finite (Boolean) space. Since any two such parti-
tions have a common refinement, which, again, consists of clopens, this system of finite
continuous quotients of X, ordered by P 6 Q provided Q refines P, is an inverse limit
system. Further, one can show that the limit of this system is (homeomorphic to) X.

This leads to a notion of finite recogniser, which was actually introduced indepen-
dently of duality considerations in [Krebs et al. 2007] as typed monoids.

Definition 2.14. A typed monoid is a tuple (M,p,X), where X is a finite set, M is a
monoid and p : M ⇣ X is a surjective set function. (Up to isomorphism) both the finite
set X and the map p are determined by the partition P = {p�1(x) | x 2 X} induced by
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p. Thus we will mainly work with typed monoids (M,P), where M is a monoid and P
is a finite partition of M . We say that a monoid morphism  : A⇤ ! M into the monoid
component of a typed monoid (M,p,X) ⇠= (M,P) recognises a language L ✓ A⇤ if and
only if there is a subset S ✓ X(⇠= P) with L = (p �  )�1(S) =  �1(

S
P2S

P ). As in
the regular case, we say that (M,p,X) recognises L ✓ A⇤ provided there is a monoid
morphism  : A⇤ ! M which recognises L.

Example 2.15 (The syntactic typed monoid for MAJORITY). The notion of typed
monoid may be seen as arising from separating the two features of a finite monoid
as recogniser: namely recognition by a monoid and recognition by a finite set. Since
both notions have a ‘best’ solution there is also a best typed monoid recognising a lan-
guage, given simply by the partition L, Lc of the syntactic monoid M

L

= A⇤/ ⇠
L

of L.
In the case of MAJORITY, this is the typed monoid (Z, {Z+,Z�[{0}}). Via the syntactic
morphism ⌘, it just recognises the four languages in the Boolean algebra generated by
L. In order to get the syntactic space of L we need to consider all the finite Boolean sub-
algebras of B(L), or at least an increasing chain of these. That is, if we have a directed
collection {B

i

}
i2I

of subalgebras of B(L) whose union is B(L), then {(Z, At(B
i

))}
i2I

with
the connecting maps At(B

j

) ⇣ At(B
i

) dual to B
i

,! B
j

whenever B
i

✓ B
j

is an inverse
limit system whose limit is the syntactic space of L.
As long as we are only interested in Boolean algebras of languages which are closed
under the quotienting action of A⇤ on its powerset, the Boolean spaces with internal
monoids suffice. However, since for non-regular languages, these are necessarily in-
finite spaces, the typed monoids, as finite approximants, allow an approach closer to
the one that is familiar to automata theorists. We will see more on the use of typed
monoids in Section 3.

2.5. Duality between subalgebras and quotients: Equations
The tool for separation results or in fact, in the regular setting, characterisation results
are so-called equations. From the point of view of duality, these arise from the fact
that the dual of a Boolean subalgebra is a quotient space, and thus given by equating
elements of the bigger space.
That is, if B is a Boolean subalgebra of Reg(A⇤), then the dual space X of B is a quotient
of the dual of Reg(A⇤). Since the dual of Reg(A⇤) is the free profinite monoid, cA⇤, it
follows that X is obtained as cA⇤/E where E is a set of pairs of profinite words, i.e.,
elements of cA⇤.
In the case of a Boolean subalgebra of P(A⇤), not contained in the regular languages,
the dual will not be a quotient of cA⇤ but of the dual of P(A⇤), which is the Stone-Čech
compactification �(A⇤). Accordingly, these Boolean algebras will be characterised by
sets of pairs of ultrafilters µ ⇡ ⌫ with µ, ⌫ 2 �(A⇤).
This would not be all that helpful if we really needed to compute the entire equivalence
relation E . However, duality gives us a means of specifying E from a (possibly) much
smaller set of pairs.

Definition 2.16. Let X be a Boolean space and E ✓ X⇥X. We call E a Boolean equiv-
alence relation provided the quotient space X/E is again a Boolean space. A quotient
space of a Hausdorff space is again Hausdorff if and only if the equivalence relation is
closed in the product topology. The compactness comes for free. In order for X/E to be
zero dimensional, for any two non-equivalent points x, y 2 X, there must be a clopen
U ✓ X which separates them and which is saturated with respect to E .
The last condition required for being a Boolean equivalence relation is in general dif-
ficult to achieve as it isn’t prima facie a closure property. However, the following the-
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orem shows that it is, making ‘the least Boolean equivalence relation containing a set
E ✓ X ⇥X ’ well defined.

THEOREM 2.17 (STONE DUALITY FOR SUBALGEBRAS OF BOOLEAN ALGEBRAS).
Let B be a Boolean algebra, X the dual space of B. The assignments

E 7! A
E

= {a 2 B | 8(x, y) 2 E (x 2 ba () y 2 ba)}
for E ✓ X ⇥X and

S 7!⇡
S

= {(x, y) 2 X ⇥X | 8a 2 S (x 2 ba () y 2 ba)}
for S ✓ B establish a Galois connection whose Galois closed sets are the Boolean equiv-
alence relations and the Boolean subalgebras, respectively.

Definition 2.18. Let B be a Boolean algebra, X its dual space, and x, y 2 X. An
element a 2 B satisfies the equation x ⇡ y, and we write a ✏ x ⇡ y, provided

x 2 ba () y 2 ba.
COROLLARY 2.19. Let B be a Boolean algebra, X the dual space of B. Every set of

equations over X determines a Boolean subalgebra of B, and every Boolean subalgebra
of B is given by a set of equations over X.

Example 2.20 (The meaning of the profinite equations for FO[N ] \ Reg). Given an
element m of a finite semigroup or monoid M , consider the cyclic subsemigroup, hmi,
generated by m. If k and l are the least positive integers such that mk = mk+l then it
is not difficult to see that {mk,mk+1, . . . ,mk+l�1} is isomorphic to the group of integers
modulo l. This subgroup of M has an identity element, which is then an idempotent
element of M . In addition, it is not too hard to see that it is the only idempotent in
hmi. By a Cayley-type argument, one can show that, for any element m 2 M , where M
has n elements, this unique idempotent in the cyclic semigroup generated by m must
be equal to mn!. This argument generalises to compact topological semigroups: any el-
ement x of a compact topological semigroup has a unique idempotent in the closure of
the cyclic semigroup generated by x and this element, which is denoted by x! may be
obtained as lim

n!1 xn!. In particular, the sequence {xn!} is convergent.
Let us first look at the equation y! ⇡ y!+1. This is the equation for aperiodic

monoids, that is, monoids that do not contain any non-trivial groups. This equation
characterises FO[<] and the corresponding languages are the star-free regular lan-
guages. This is the content of the seminal results of Schützenberger [Schützenberger
1965] and McNaughton and Papert [McNaughton and Papert 1971]. Now, one can show
that a language satisfies the equation y! ⇡ y!+1 if and only if its syntactic monoid does,
and the latter is clearly something one can check in a finite monoid and this is what
makes membership in FO[<] and star-freeness decidable.

Informally speaking, the equation y! ⇡ y!+1 says that if we repeat the word y often
enough, it behaves the same as if we repeat it even one extra time. Formally, a regular
language L satisfies the equation provided there exists an n such that yn! ⇡ yn!+1 holds.
From this description we get that, in a fixed language L, we cannot count repetitions
beyond some constant threshold. It also means that we cannot count modulo any num-
ber: Let y = a, then yn! will have an even number of a’s, and yn!+1 has an odd number of
a’s. So we cannot count modulo two. Since the equations satisfied by a pseudo-variety
are closed under multiplication by words on both sides, we also have the equations
yyn! ⇡ yyn!+1 which is the same as yn!+1 ⇡ yn!+2, hence we get yn! ⇡ yn!+1 ⇡ yn!+2.
This yields that we cannot count modulo three. Similarly this equation prevents us
from being able to count modulo any number, or beyond any threshold as yn! ⇡ yn!+m

for any number m 2 N.
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Now consider the equation (z!�1x)! ⇡ (z!�1x)!+1 from (2), which characterises the
regular languages in AC0. This is basically the equation y! ⇡ y!+1 where y is restricted
to be of the form z!�1x.

Given a stamp � : A⇤ ! M , where M is a finite monoid, one can show that � satisfies
the equation (z!�1x)! ⇡ (z!�1x)!+1 if and only if the so-called stable subsemigroup of
� is aperiodic. To obtain the stable subsemigroup of �, we have to consider the powerset
monoid, P(M). Notice that this is again a semigroup (even a monoid) with the point-
wise product. The image �[A] of the alphabet is an element of the finite semigroup
P(M). As such it has a unique idempotent power, call it S. Since S is idempotent it is a
subsemigroup of M . This is the stable subsemigroup of �. Clearly, again, this property
can be checked for a stamp � : A⇤ ! M .

While the equation y! ⇡ y!+1 holds in FO[<], it does not hold in FO[N ] \ Reg. For
example we can distinguish an! from an!+1 by the language L = {w | |w| ⌘ 0 mod 2}.
This is because we have all nullary predicates in the logic class. Beyond that we can
distinguish whether an a is in an even or in an odd position, so even the profinite terms
z!xz!+1 and z!+1xz! are not equated. This equation again holds in FO[<], as can be
seen by applying z! ⇡ z!+1. Here the x is at an even position in the first case and at
an odd position in the second case.

We know by Furst, Saxe, Sipser that FO[N ] \ Reg cannot count modulo two. So in
order to create profinite words that can be identified, we want to create two instances
of words that have a different number of a’s but the positions where the relevant a’s
appear are positions that behave the same, i.e., are the same number modulo any
natural number and are larger than any constant. Additionally the two words we pick
should have word lengths that behave the same.

So we want to pick two (or actually more) positions for the a’s that are at the same
position modulo any natural number. There will be no word z 2 A⇤ such that the
positions of the a’s in aza is zero modulo all natural numbers. But inside a profi-
nite word we can use a(lim

n!1 bn!�1)a and the two positions of a have the desired
property. Now we want these positions to be larger than any constant so we can pick
(lim

n!1 bn!)a(lim
n!1 bn!�1)a. Whether we pick bn! or bn!�1 as a prefix does not matter

as this only ensures that both positions of the a’s are larger than any constant.
More generally we get (z!�1x)! ⇡ (z!�1x)!+1, where z, x need to have the same

word length. So this equation says that we cannot count modulo or beyond a threshold
inside an undistinguishable equivalence class of positions (assuming both words have
the same length, i.e., both are larger than any constant and have the same length
modulo any natural number).

The previous example discusses the meaning and consequences of an equational char-
acterisation, but it does not provide a proof (which is much too substantial to discuss
here). In the following example, we prove that a certain characterisation by equations
holds in a very simple case in order to illustrate the technical content of such a state-
ment. A more substantial but still relatively simple case is treated in Section 3.

Example 2.21 (Equations for MAJORITY). We will show that, relative to �(Z), the
dual space X of B(L), where L is the language MAJORITY, is characterised by the
equations

{µ+ 1 ⇡ µ | µ 2 �(Z)\Z}.
Before proving this, we make a few comments. First note that �(Z) is an uncount-
able space. As a topological space, it is homeomorphic to �(N), being the Stone-Čech
compactification of a countable discrete space. However, as a Boolean space with an in-
ternal monoid it is of course different as the internal monoids and thus also the actions
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are different. The action of Z on �(Z) is given by

S 2 �
k

(µ) () S � k 2 µ

and we will write µ + k for �
k

(µ) (this looks like a right action but since Z is com-
mutative the right and left actions agree). Also, recall that the syntactic space of the
language MAJORITY is the ‘two point compactification’ X = Z[{�1,+1} as described
in Example 2.9. It is not difficult to see that the quotient map is:

�(Z) ! X,µ 7!

8
<

:

k provided {k} 2 µ
+1 provided Z+ 2 µ 2 �(Z)\Z
�1 provided Z� 2 µ 2 �(Z)\Z

These three conditions are exhaustive as the first accounts for all the principal ul-
trafilters. The rest are the ones in the so-called remainder �(Z)\Z, also referred to
as free ultrafilters. Such a filter cannot contain any finite subset of Z. Finally, since
Z = Z� [ {0} [ Z+ it follows that, in any free ultrafilter we must have (exactly one of)
Z+ 2 µ or Z� 2 µ.
Thus we see that, in the equivalence relation E ✓ �(Z) ⇥ �(Z) corresponding to X,
uncountably many free ultrafilters are in the equivalence class corresponding to each
of +1 and �1.
Now we prove that the ‘few’ equations given above suffice to characterise the quotient
space X (there are uncountably many equations in the set but only a few ultrafilters
are stipulated to be equated with any one ultrafilter).
We want to show that, for K ✓ Z and µ 2 �(Z)\Z we have

(K 2 µ () K 2 µ+ 1) () K 2 B(L)

where L is MAJORITY. Since K 2 µ+1 if and only if K�1 2 µ, it follows that K satisfies
the equation µ ⇡ µ+ 1 if and only if K 2 µ is equivalent to K � 1 2 µ. Further, it is an
easy verification, see e.g. [Gehrke et al. 2016, Proposition 1.8.], that for any ultrafilter
µ of a Boolean algebra and any two elements b and b0 of the algebra, we have

(b 2 µ () b0 2 µ) () b4b0 /2 µ.

Thus we need to prove, for K ✓ Z and µ 2 �(Z)\Z,

K4(K � 1) /2 µ () K 2 B(L).

First notice that for each k 2 Z we have Z+�k ✓ Z+�k�1 and therefore the symmetric
difference is (Z+�k)4(Z+�k�1) = (Z+�k�1) � (Z+�k) = {�k}. Thus for any free
ultrafilter µ, we have that (Z+�k)4(Z+�k�1) /2 µ. We have shown that each generator
of B(L) satisfies the equation µ + 1 ⇡ µ, and therefore it follows by Theorem 2.17
that every element of B(L) satisfies the equation. This proves the soundness of the
equations.
For the converse, suppose K /2 B(L). Then one of K\Z+ and K\Z� is neither finite nor
cofinite. It follows that there exists an infinite set S ✓ Z so that S ✓ K but (S+1)\K =
;. Since S is infinite, there is a free ultrafilter µ of Z which contains S (to see this, note
that {T ✓ Z | T \ S is cofinite} is a proper filter of P(Z) and thus extends to an
ultrafilter. Finally, this ultrafilter cannot contain any singleton set and must thus be
free). Since (S+1)\K = ;, for each m 2 S, m+1 /2 K, or equivalently, m /2 K � 1. That
is, S \ (K�1) = ;. Thus S ✓ K4(K�1) and thus K4(K�1) 2 µ.

3. A SIMPLE APPLICATION
In this section we will examine the logic class FO1[N0,N uni

1 ]. This class consists of
languages of words w = w1 . . . wk

which, viewed as relational structures on initial
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segments {1, . . . , k} of N, satisfy first-order sentences of quantifier depth one using let-
ter predicates, arbitrary non-uniform nullary predicates, i.e., all numerical predicates
P that depend only on the length of the word, and arbitrary uniform unary predi-
cates, i.e., all numerical predicates P (x) that accept certain positions x independent of
the the specific word or its length, see [Gehrke et al. 2016, Section 2.2] for a detailed
description of the connection between the logic fragment and the Boolean algebra of
languages.

Both the nullary and the unary numerical predicates in question can be represented
by subsets of the natural numbers: we identify a non-uniform nullary predicate P with
the subset

{n 2 N | w |= P for some (and then for all) w with length n}.

We can identify a uniform unary predicate P (x) with the subset

{n 2 N | w
x=n

|= P (x) for some (and then for all) w with length > n}

where w
x=n

denotes the model obtained by adding to w an interpretation under which
x is sent to the nth position of w. It is an easy verification that the Boolean algebra
FO1[N0,N uni

1 ] is generated by the languages Mod(P ) and Mod( 8x(a(x) =) P (x))), i.e.,
the languages

L
P

= {w 2 A⇤ | length(w) 2 P} and L
a,P

= {w 2 A⇤ | w
i

=a ) i 2 P},

where P ranges over the subsets of N and a 2 A. It is quite simple to analyse this
logic class by combinatorial methods, so this is a good class to pick as an example
to demonstrate the duality approach. It is also the first layer of the inductive con-
struction of FO[N ] = AC0. The material in this section is a slightly reformulated
presentation of part of the content of [Gehrke et al. 2016]. This reformulation is closer
to the formulation of the result in [Czarnetzki and Krebs 2016], which proves a result
that is a generalisation of [Gehrke et al. 2016].

Just as FO[N ] \ Reg is an lp-variety of stamps rather than of finite monoids, so
FO1[N0,N uni

1 ] is an lp-variety of ‘typed stamps’, that is, pairs consisting of a typed
monoid (M,P) and a surjective monoid morphism � : A⇤ ⇣ M . We denote such a typed
stamp by (A⇤,�,M,P).

Remark 3.1. In [Behle et al. 2011; Behle et al. 2013] the notion of a typed monoid
was extended to objects of the form (M,B,U), where M is a monoid and B is a finite
Boolean algebra of subsets of M , and U is a finite subset of M . The correspondence
between the two notions is provided by the discrete duality

◆ : B ,! P(M) ! ◆�1 : M ⇣ At(B).

That is, the typed stamp in our sense corresponding to (M,B, U) is (U⇤,�,M,At(B)),
where � is the monoid morphism extending the identity map, and conversely, given a
typed stamp (A⇤,�,M, p,X), the triple (M,B(X),�[A]) where

B(X) = {p�1(P ) | P ✓ X}

is a typed monoid in the sense of [Behle et al. 2011].

The lp in lp-variety stands for length preserving. A homomorphism � : A⇤ ! B⇤ be-
tween free finitely generated monoids is said to be length preserving provided it sends
letters to letters. That is, it is the (unique) extension of a map A ! B rather than just
of a map A ! B⇤.

ACM SIGLOG News 46 April 2017, Vol. 4, No. 2



Definition 3.2 (lp-variety). An lp-variety of languages is an assignment, for each fi-
nite alphabet A, of a set V(A) of languages over A so that the following two properties
are satisfied:
(1) For each finite alphabet A, V(A) is a Boolean subalgebra of P(A⇤) which is closed

under the quotienting biaction of A⇤ on P(A⇤);
(2) If � : A⇤ ! B⇤ is a length preserving homomorphism between free finitely gener-

ated monoids and L 2 V(B), then ��1(L) 2 V(A). That is, ��1 restricts to a Boolean
algebra homomorphism ��1 : V(B) ! V(A).

We will not give the definition of an lp-variety of typed stamps, but, as in the classi-
cal setting, it is simply the class of all typed stamps making up the (fullest possible)
inverse limit systems (as discussed in Section 2.4) of the Boolean spaces with internal
monoids dual to the V(A)’s.

3.1. The variety N
In what follows N is the usual additive monoid of natural numbers. Note that it is also
isomorphic to A⇤ when A has only one element and for this reason we will write N
instead of A⇤ in this case.

Definition 3.3 (N). Let N be the smallest pseudo-variety of typed stamps containing
(N, id,N, {P, P c}) for all subsets P ✓ N where id : N ! N is the identity isomorphism.
The definition of N gives us a set of languages in N, that is, in A⇤ where A is the one
element alphabet. Also, since (N, id,N, {P, P c}) recognises the languages P, P c, ;, and
N, and we take these typed monoids for every P 2 P(N), the set of languages recognised
by N in N itself will simply be the full powerset P(N). Now, for any other alphabet A,
there is exactly one length preserving morphism ` : A⇤ ! N, namely the one that sends
each letter to 1. That is, for each w 2 A⇤, we have `(w) = length(w). Thus we see that
L
P

= {w 2 A⇤ | `(w) 2 P} must be among the languages recognised by N. Also, it is not
difficult to see that we do not obtain anything more. Thus we have:

LEMMA 3.4. The languages recognised by N are exactly the languages L
P

= {w 2
A⇤ | `(w) 2 P} for some subset P ✓ N.

Hence it seems that N is tailored to recognise exactly the non-uniform nullary predi-
cates of our logic. But even more is true, when used in the right-hand side of the wreath
product, the typed monoid will be applied to a prefix of a word, and will hence accept
exactly a certain set of positions, like the uniform unary predicates do.

3.2. The variety J1 ⇤ N
We extend the notion of a wreath product from finite monoids to typed stamps. Given
two monoids N and M , we define N ⇤ M to be the monoid based on the set NM ⇥
M with the multiplication defined by (f1,m1) · (f2,m2) = (f,m1m2) where f(m) =
f1(m)f2(mm1) for all m 2 M .

Definition 3.5 (Wreath product). Given two typed stamps (A⇤,�,M,P) and ((A ⇥
P)⇤, , N,Q), we define the wreath product ((A⇥ P)⇤, , N,Q) ⇤ (A⇤,�,M,P) to be the
typed stamp

(A⇤, ✓, S,R),

where
(1) S ✓ N ⇤M is the monoid generated by the elements of the form (f

a

,�(a)) for a 2 A,
where f

a

(m) =  (a, [m]) and [m] is the unique element of P containing m;
(2) ✓ : A⇤ ! S is defined by ✓(a) = (f

a

,�(a));
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(3) R = {{(f,m) | f(1) 2 Q,m 2 P} | Q 2 Q, P 2 P}.

As in the case of finite monoids we can apply the wreath product to varieties in the
following sense. Here J1 denotes the pseudo-variety of all finite semi-lattices.

Definition 3.6 (J1 ⇤ N). Let J1 ⇤ N be the smallest lp-variety of stamps containing
the typed stamps obtained by taking wreath products of stamps in J1 with stamps in
N.

Finally we are able to characterise the logic class of our example in terms of typed
stamps.

LEMMA 3.7. A language is in FO1[N0,N uni

1 ] iff it is recognised by J1 ⇤ N.

PROOF. One can show that the typed stamps of the form ((A⇥P)⇤, , U1, {{0}, {1}})⇤
(A⇤,�,N,P), where U1 is the monoid on {0, 1} with minimum and (A⇤,�,N,P) 2 N,
generate the variety. Thus it is sufficient to show that these can be defined in
FO1[N0,N uni

1 ].
Let (A⇤, ✓, S,R) = ((A ⇥ P)⇤, , U1, {{0}, {1}}) ⇤ (A⇤,�,N,P). Since S ⇢ U1 ⇤ N, we

will denote the elements of S as pairs (f,m) 2 UN
1 ⇥ N. We will write the monoid N

additively, hence the multiplication is + and the neutral element is 0, whereas we
denote the multiplication in U1 by · and the neutral element by 1.

The elements of R are of the form {(f,m) | f(0) = v,m 2 P} for P 2 P and v 2 {0, 1}.
For each P 2 P and v 2 {0, 1}, we give a formula that defines exactly the language
L
P,v

= ✓�1({(f,m) | f(0) = v,m 2 P}).
Given a word w 2 A⇤ we can compute ✓(w) = (f

w

,m
w

). By definition m
w

= |w|, and
f
w

(0) = f
w1(0) · fw2(1) · fw3(2) · . . . · fw|w|(|w|� 1). Hence f

w

(0) = 0 iff there is an i such
that f

wi(i� 1) = 0.
Hence the language L

P,0 is defined by the formula |w| 2 P^
W

(a0
,P

0)2J

9x P 0(x)^a0(x),
where J = {(a0, P 0) 2 A ⇥ P | 8m 2 P 0 : f

a

(m) = 0}. Similarly we can define L
P,1 by

|w| 2 P^
W

(a0
,P

0)2J

¬9x P 0(x)^a0(x), where J = {(a0, P 0) 2 A⇥P | 8m 2 P 0 : f
a

(m) = 0}.
This proves one direction. For the other direction we use the characterisation of

the logic class in [Gehrke et al. 2016] where it was shown that the languages defined
in this logic class are Boolean combinations of languages L

Q

= {w | |w| 2 Q} and
L
a,Q

= {w | 8j a(j) =) j 2 Q} for Q ✓ N.
A language of the first type is recognised by the typed stamp (A⇤,�,N, {Q,N \Q}) as

��1(Q).
A language of the second type is a bit more complicated. It is recognised by the typed

stamp (A⇤, ✓, U1 ⇤ N,R) = ((A ⇥ P)⇤, , U1, {{0}, {1}}) ⇤ (A⇤,�,N, {Q,N \ Q}), where
f
a

(j) = 1 if j 2 Q and f
a

(j) = 0 otherwise, f
b

(j) = 1 for all a 6= b 2 A, j 2 N as the
✓�1({(f,m) | f(0) = 0}). Computing the value of f

w

(0), where (f
w

,m
w

) = ✓(w), will
show that L

a,Q

is the language that is recognised in this way.

3.3. Guided guess of the equations
As explained in the introduction, classical algebraic automata theory is a mature and
sophisticated theory with very powerful tools and results developed over the past 40 to
50 years. The idea then for the non-regular setting is to let us be guided by correspond-
ing classical results. For pseudo-varieties V of finite monoids, the results in [Almeida
and Weil 1998] yield the following equations for J1 ⇤V:

— xyz ⇡ xzy for all x, y, z 2 cA⇤ if x ⇡ xy ⇡ xz are equations for V;
— xy ⇡ xy2 for all x, y 2 cA⇤ if x ⇡ xy is an equation for V.
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If a Boolean algebra closed under quotients satisfies x ⇡ y, then it satisfies xz ⇡ yz for
all z 2 A⇤. In the regular case, this extends to xz ⇡ yz for all z 2 cA⇤. This is because if
prefixes behave equivalently for all words up to a fixed, but arbitrarily large, size, then
by using the pumping lemma for regular languages this extends to all profinite words.
However, in the non-regular case we do not have such a pumping lemma available. So
instead of allowing any pair x, y in the first equation we want to swap only one letter.
In fact, for regular languages recognised by J1 ⇤ N, the equations

xayb ⇡ xbya (5)

where x 2 cA⇤\A⇤ and length(x) = length(xay) suffice for the first batch of equations.
Thus we want a non-regular version of the equations (5). In �(A⇤), we do not have

a continuous monoid operation, but we can get around this problem. To this end, let
a, b 2 A and consider the following functions:

A⇤ ⇥A⇤

A⇤

N
`1

`2

f
ab

f
ba

where
f
ab

(u, v) = uavb and f
ba

(u, v) = ubva

`1(u, v) = length(u) and `2(u, v) = length(uav).

Then [Gehrke et al. 2016, Theorem 3.2] states (in a slightly different but equivalent
form) that

THEOREM 3.8. If a language L 2 P(A⇤) is recognised by J1 ⇤ N then it satisfies the
equations

�f
ab

(�) ⇡ �f
ba

(�)

for all a, b 2 A and all � 2 �(A⇤ ⇥A⇤) such that �`1(�) = �`2(�).

Similarly, one may show that, for the regular languages recognised by J1 ⇤N, the equa-
tions in the second batch, of the form xy ⇡ xy2, are equivalent to equations of the
form x2y ⇡ xy2, and then again to the equations xayazb ⇡ xaybzb where x 2 cA⇤\A⇤

and length(x) = length(xay) = length(xayaz). Here again we obtain corresponding �-
equations by considering, for any two letters a, b 2 A the functions

g
aab

: (A⇤)3 ! A⇤, (u, v, w) 7! uavawb

g
abb

: (A⇤)3 ! A⇤, (u, v, w) 7! uavbwb

and k
i

: (A⇤)3 ! N, i = 1, 2, 3, given by
k1(u, v, w) = length(u) , k2(u, v, w) = length(uv)+1 and k3(u, v, w) = length(uvw)+2.

One can then prove, c.f. [Gehrke et al. 2016, Theorem 3.3]
THEOREM 3.9. If a language L 2 P(A⇤) is recognised by J1 ⇤ N then it satisfies the

equations
�g

aab

(�) ⇡ �g
abb

(�)

for all a, b 2 A and all � 2 �((A⇤)3) such that �k1(�) = �k2(�) = �k3(�).
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And in fact the completeness result of [Almeida and Weil 1998] lifts in this case to the
not-necessarily-regular setting as was proved in [Gehrke et al. 2016, Theorem 4.7]:

THEOREM 3.10. A language L 2 P(A⇤) is recognised by J1 ⇤ N if and only if it
satisfies the equations

�f
ab

(�) ⇡ �f
ba

(�) and �g
aab

(µ) ⇡ �g
abb

(µ)

for all a, b 2 A, all � 2 �((A⇤)2) such that �`1(�) = �`2(�), and all µ 2 �((A⇤)3) such
that �k1(µ) = �k2(µ) = �k3(µ).

Just like the corresponding equations for the regular languages, these equations give
us clear intuitive information about the expressive power of the pseudo-variety J1 ⇤N.
To this end, one should think of �f

ab

(�) as a generalised word of the form uavb and of
�f

ba

(�) as a generalised word of the form ubva, and similarly for �g
aab

(µ) and �g
abb

(µ).
Then we may interpret the two batches of equations as follows:
— J1 ⇤ N cannot distinguish the order of letters in equivalent positions;
— J1 ⇤ N cannot count the number of occurrences of a letter in equivalent positions.
For the second, note that we really mean ‘cannot count beyond 1’, since J1 ⇤ N can
tell which letters occur in a set of equivalent positions (e.g. �f

ab

(�) ⇡ �f
aa

(�) is not a
valid equation for J1 ⇤ N). That is, it can tell the difference between 0 and at least 1
occurrence of a letter, but no more.

Example 3.11 (PARITY does not satisfy one of the equations for FO1[N0,N uni

1 ]).
FO1[N0,N uni

1 ] is a very small fragment of FO[N ] = AC0, so by [Furst et al. 1984]
we know that PARITY does not belong to FO1[N0,N uni

1 ]. Here we show this directly
by finding an equation among the ones given in Theorem 3.10 which does not hold
of PARITY. To this end, note that PARITY is a commutative language, so it definitely
satisfies all the equations of the first batch. The second batch, which says that we
cannot count beyond ‘at least one’ seems contradictory to PARITY. We show that it is.

Let L denote the language PARITY and set

T = {(ai, aj , bk) | i, j, k 2 N} ✓ (A⇤)3.

We pick this subset T because it will be easier to control the preimage of L on T than it
is on (A⇤)3 but T is still infinite and thus ‘big enough’ to be in an ultrafilter µ 2 �((A⇤)3)
satisfying �k1(µ) = �k2(µ) = �k3(µ). Indeed, this is what we prove first.

To this end, let ↵ be any free ultrafilter of �(N) and consider the set

G = {S \
3\

j=1

k�1
j

(P ) | P 2 ↵}.

We show that the elements of G ✓ P((A⇤)3) are all non-empty, thus, as G is closed
under finite intersections, it will follow that there is an ultrafilter µ 2 �((A⇤)3) that
extends G. Let P 2 ↵. Since ↵ is a free ultrafilter, P ✓ N is infinite. Let n 2 P . Since
P is infinite, there exists n0 2 P with n + 1 < n0. Similarly, there is n00 2 P with
n+n0+2 < n00. Now it follows that s = (an, an

0�n�1, bn
00�n

0�n�2) 2 S and k1(s) = n 2 P ,
k2(s) = n0 2 P , k3(s) = n00 2 P . That is, s 2 S \

T3
j=1 k

�1
j

(P ). Accordingly, pick an
ultrafilter µ 2 �((A⇤)3) that extends G. We claim that �k

j

(µ) = ↵ for j = 1, 2, and 3.
To see this, let P 2 ↵ then by construction k�1

j

(P ) 2 µ and therefore P 2 �k
j

(µ). Thus
↵ ✓ �k

j

(µ), but distinct ultrafilters are non-comparable, so ↵ = �k
j

(µ) as stipulated.
We claim that

PARITY 6✏ �g
aab

(µ) ⇡ �g
abb

(µ).
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This is substantiated by the following string of equivalences

g�1
aab

(L) 2 µ () S \ g�1
aab

(L) 2 µ

() {(ai, aj , bk) | i+ j + 2 is odd} 2 µ

() {(ai, aj , bk) | i+ j + 2 is even} /2 µ

() {(ai, aj , bk) | i+ j + 1 is odd} /2 µ

() S \ g�1
abb

(L) /2 µ

() g�1
abb

(L) /2 µ.

This last example thus gives an example of how one may use equations to separate
language classes (in this case FO1[N0,N uni

1 ] and FO+MOD[N ]).

4. FUTURE GOALS
Our aim is to understand the computational power of AC0. While we have a clear
understanding for some languages, there still are very simple languages, ‘just outside’
the regular language class, for which it is not known whether or not they belong to
AC0. For example, for the linear context free language described by the grammar S !
acSb|aScb|✏, we do not know of any method for deciding whether it is in AC0 or not.

On the way to reach this goal other very challenging problems show up. What are
the regular languages in linear AC0, where linear AC0 has the same power as FO2[N ]?

Even more challenging are some open problems, that do not seem so hard at a first
glance, yet they have resisted for a long time. So it would be interesting to understand
what makes these problems hard:

Consider a circuit family where all gates are modulo 6 gates, i.e., the gate is true
provided the number of inputs evaluating to true is 0 modulo 6. We limit this family
to depth 3 and polynomial size. It is open whether 1⇤ can be computed by this class.
So the class seems to be rather weak, yet it is not known how to separate this class
from NP. Hence we want to compute equations for this class, and even if we do not
get all equations there is some hope for obtaining equations that rule out at least one
NP-hard problem.

All these problems have in common that their hardness stems from the fact that they
have powerful numerical predicates. So a different class to look at would be MAJ[<],
which is equivalent to FO[<]�uniform TC0. There is a strong belief that this class
cannot compute all regular languages, but this also remains open.

A simpler class to look at is MAJ2[<] which is known not to contain all regular
languages, but still it would be a worth-while goal to find equations for this class.

In order to understand all these classes better we would like to borrow techniques
from the world of regular languages such as the block product principle, the derived
category theorem, and many more. It is a promising direction to try to lift all these
principles beyond regular languages and apply them.
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Jean-Éric Pin. 2009. Profinite Methods in Automata Theory. In STACS 2009, Albers and Marion (Eds.),
Vol. 3. Schloss Dagstuhl, 31–50. http://drops.dagstuhl.de/opus/volltexte/2009/1856
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The growing popularity of verification competitions such as VerifyThis Verification
Competition and the Competition on Software Verification (SV-COMP), both, incen-
tivize as well as reward tool developers. VerifyThis 2016 was held in Eindhoven co-
located with the European Joint Conferences on Theory and Practice of Software
(ETAPS) 2016. The competition presents challenges to evaluate a broad range of tools
such as Danfy, KeY, VeriFast, CIVL, among others. The first article in the newsletter
“CIVL Solutions to VerifyThis 2016 Challenges” by Stephen F. Siegel at University
of Delaware presents the solutions to the challenges using The Concurrency Interme-
diate Verification Language (CIVL) verifier. CIVL supports of a variety of techniques
based on symbolic execution and model checking to verify sequential and concurrent
programs. The article presents an overview of the framework, a description of the chal-
lenges, and how CIVL performs on the benchmarks. The second article “Security by
Compilation: An Automated Approach to Comprehensive Side-channel resistance” by
Chao Wang from University of Southern California and Patrick Schaumont from Vir-
ginia Tech leverage formal verification and program synthesis to detect side challenge
attacks on mobile devices. The approach is evaluated on implementations of MAC-
Keccak, AES and other cryptographic algorithms. This article bridges the security and
verification forums of the newsletter.

I sincerely thank all the contributing authors Stephen Siegel, Chao Wang, and
Patrick Schaumont for sharing their work with the SIGLOG and the larger logic, for-
mal methods, and verification community.
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CIVL Solutions to VerifyThis 2016 Challenges

Stephen F. Siegel, University of Delaware

The VerifyThis 2016 program verification competition was held in April, 2016. The competition pre-
sented three verification challenges: the first dealt with matrix multiplication, including the correctness
of Strassen’s algorithm; the second dealt with Morris’ tree traversal algorithm, and the third required ver-
ification of a multithreaded tree barrier. In this paper I present solutions using the CIVL (Concurrency In-
termediate Verification Language) verifier. CIVL is able to verify each program within small but non-trivial
bounds. The solutions are relatively simple, and are presented in full.

1. INTRODUCTION
This paper presents solutions to the VerifyThis 2016 challenges using the CIVL veri-
fier. The fifth event in an annual series, the competition took place on April 2, 2016, as
part of the European Joint Conferences on Theory and Practice of Software (ETAPS).
The competition proper took place in one day, and consisted of three challenges, each
lasting 90 minutes. Each challenge consisted of a natural language description of a
problem, usually with some pseudocode, and a description of properties expected to
hold. Working in teams of one or two members, participants attempted to implement,
specify, and formally verify the system described, using any languages and verifica-
tion frameworks of their choosing. The definition of formal verification is broad and
the competition included deductive verification approaches as well as bounded model
checking. The organizers evaluated each solution for correctness, completeness, and
elegance. The 14 teams used 9 different tools: CIVL, Dafny, Why3, KIV, KeY, VerCors,
Viper, mCRL2, and VeriFast. A second day was used to present and discuss solutions.
The complete challenge statements and other information are available on the com-
petition web site [Huisman et al. 2016a]. A post-competition report summarizes the
results [Huisman et al. 2016b].

After the competition, participants and others could submit completed and cleaned
up versions of their solutions to a public Wiki accessible from the competition web
page. The solutions shown here are the revised versions. In each case, I point out any
significant differences from my original solutions.

CIVL. The CIVL verifier [Siegel et al. 2015; CIVL 2017] uses symbolic execution and
model checking techniques to verify sequential or parallel C programs. The parallel
programs may use MPI [Message-Passing Interface Forum 2015], OpenMP [OpenMP
2017], CUDA [NVIDIA 2017], or Pthreads [IEEE 2004], or even combinations of those
APIs. The framework is built around an intermediate language called CIVL-C. CIVL-
C is an extension of (sequential) C which includes a number of primitives facilitating
specification as well as basic concurrency primitives. The CIVL framework consumes
a C program using those concurrency dialects and transforms it into a pure CIVL-
C program which can be consumed by the verifier. Users can also write in CIVL-C
directly, and this was the approach I took in the competition.

The CIVL verifier checks a number of safety properties, including absence of as-
sertion violations, deadlocks, division by 0, illegal pointer dereferences, out-of-bound
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array indexes, memory leaks, improper uses of malloc/free, and reads of uninitialized
memory. The assertion language is richer than regular C—e.g., it includes first-order
quantifiers and predicates for deep equality of objects.

Typically, CIVL is used to verify properties within some bounded region of the input
space. Bounds are usually placed on the size of input data structures, on parameters
that control the number of loop iterations, and on the number of processes or threads.
Within these bounds, properties are verified exhaustively: for all possible values of the
inputs, for all thread interleavings, for all choices available to the concurrency APIs
(such as wildcard matchings in MPI), and so on.

The effectiveness of this verification approach relies on the small scope hypothesis—
the belief that defects in a parameterized system almost always manifest themselves
in some instance of the system with small parameter values. For example, if a program
to multiply matrices behaves correctly on all matrices with size n  10, most people
would take this as strong evidence that the program behaves correctly for all n. Of
course, it is possible to construct a solution which fails only for n = 11—but this tends
not to occur “in nature.”1

All other things being equal, bounded verification is not as good as approaches based
on deductive reasoning which can prove claims without bounds. However, deductive
approaches generally require significantly more effort and skill on the part of the user.
I hope this paper adds to our understanding of this tradeoff. In particular, I believe
the solutions to be sufficiently simple that a programmer of moderate skill, with some
additional training, could use CIVL in a similar way.

Repeatability. All of the solutions, original and revised, as well as a Makefile and
the CIVL output, can be downloaded from http://vsl.cis.udel.edu/verifythis2016. CIVL
is open source software released under the GNU Public Licence. The results reported
here were obtained using CIVL 1.7, the same version used in the competition, and
which is available at http://vsl.cis.udel.edu/lib/sw/civl/1.7/latest/release/.2 The CIVL
verifier is a Java program and should run on any Java 8 virtual machine. Its only
dependencies are three automated theorem provers, which should be installed and in
the user’s PATH the first time CIVL is run. The results reported here were obtained
using Z3 [de Moura and Bjørner 2008] version 4.5.1, CVC4 [Barrett et al. 2011] ver-
sion 1.4, and CVC3 [Barrett and Tinelli 2007] version 2.4.1, run on a 2014 MacBook
Air with a 1.7 GHz Intel Core i7 CPU and 8GB RAM, the same laptop used in the
competition.

2. OVERVIEW OF CIVL
2.1. Architecture
The CIVL framework comprises four components:

(1) SARL: the Symbolic Algebra and Reasoning Library, used to create and manipulate
symbolic expressions, and to prove the validity of formulas. SARL uses external
automated provers such as Z3 and CVC4;

(2) ABC: the ANTLR-based C front end, used to parse and represent C programs,
including those using OpenMP, CUDA-C, and CIVL-C; produces a CIVL-C Abstract
Syntax Tree;

(3) GMC: Generic Model Checking framework, implements standard model checking
algorithms, such as depth-first search of a state-transition system; and

1There is an implicit assumption in the small scope hypothesis that “magic numbers” such as “11” do not
occur in the program code. Such numbers should be replaced by parameters.
2The SHA1 checksum of civl-1.7_3157.jar is c1e7d31663b8588459c9275ff81bbdf4ace160fc.
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(4) CIVL proper, which uses the above 3 components. Translates a CIVL-C AST into a
lower-level model which defines a state-transition system in which states map pro-
gram variables to symbolic expressions. Uses GMC to perform reachability analy-
sis of that system, and SARL to check assertions.

2.2. SARL and Symbolic arithmetic
SARL provides services usually associated with two different fields: symbolic algebra
and automated theorem proving. The language supported by SARL is essentially a
typed (“many-sorted”) first-order logic. The types include the real numbers, integers,
booleans, and characters, as well as tuple, array, and function types. The terms in this
logic are symbolic expressions and formulas are symbolic expressions of boolean type.
Variables are symbolic constants. The function and predicate symbols are symbolic op-
erators. There are methods to build expressions, to ask if a formula is valid, to get
various kinds of information about an expression, to perform substitution, to simplify
an expression or compute an interval approximation of a numeric expression under a
given context, and so on. SARL solves many validity queries itself through its simpli-
fication process, but if that process does not suffice it invokes a sequence of external
provers.

Additional features of SARL include the following:

— There are complete and incomplete array types. Both specify an element type E,
but a complete type additionally specifies a length l, which is a symbolic expression
of integer type. The domain of the complete type consists of all sequences of E of
length l. The incomplete type’s domain consists of all finite sequences of E; it is
a supertype of every complete type with element type E. This differs from other
systems in which arrays are infinite. SARL’s approach is convenient for representing
arrays in languages such as C.

— Operators that are commutative and associative (including addition, multiplication,
logical and, and logical or) consume a finite sequence of arguments of any length.

— Two additional types are the Herbrand integers and Herbrand reals. These are like
the usual integers and reals, but numeric operations involving them are treated
as uninterpreted functions. These could be used for “bit-precise” reasoning, though
currently CIVL does not use them.

— SARL also supports operations on bit vectors, which are represented as arrays of
booleans.

Like most computer algebra systems, SARL attempts to transform symbolic expres-
sions into a standard form3 and to simplify expressions. There are multiple reasons for
doing so: (1) a standard form means two equivalent expressions are likely to be repre-
sented in the same way, which speeds up equality testing, (2) in SARL, the Flyweight
pattern is used on symbolic expressions, so using a standard form reduces the total
number of expressions and therefore the memory footprint, (3) simpler expressions
tend to be smaller, which further decreases the memory footprint, and (4) the speed
and precision of most algorithms consuming symbolic expressions decreases with the
size and complexity of the expressions, so simpler expressions generally make these
algorithms more effective.

In the SARL semantic model, operations do not have to be total, i.e., there can exist
values on which a symbolic expression is undefined. We write t1  t2 if t2 evaluates to
the same value as t1 in every valuation for which t1 is defined. For example, if X is a

3I use standard form instead of canonical form, because the latter technically means a unique representative
of an equivalence class. Transforming expressions to a true canonical form is often prohibitively expensive
and not even possible for certain classes of expressions; cf. [Caviness 1970].
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Fig. 1. Classes of expressions used to define the standard form for symbolic expressions of real type, with
examples. An edge indicates that the bottom class is a sub-class of the class above.

symbolic constant of real type, X/X  1, but 1 6 X/X, as X/X is not defined at 0. For
most applications, t1 can be safely replaced by t2.

Every SARL method that returns a symbolic expression guarantees that expression
will be in standard form. The form requires a total order on symbolic expressions: the
symbolic constants and operators are ordered, and these extend to a total order on
all expressions. For example, the standard form for boolean expressions is conjunctive
normal form, in which the operands of the and and or operators occur in increasing
order.

For expressions of real or integer type, the situation is more complicated. The spec-
ification of the standard real form, for example, requires defining several classes of
expressions. The class hierarchy is depicted in Figure 1 and the definitions are as fol-
lows:

— The real primitives are a class of expressions that play the role of “variables” in
polynomial forms. Most non-constant real expressions in which the operator is not
addition, multiplication, subtraction, or division are primitives. This includes real
symbolic constants, array reads for which the element type is real, function appli-
cations for which the return type is real, tuple selections for which the selected
component is real, and power expressions in which the exponent is not a concrete
integer. There is another type of real primitive, the nt-polynomial, defined below.

— A real constant is a concrete rational number. These are represented as quotients of
(unbounded) integers with greatest common divisor 1, and for which the denomina-
tor is positive.

— A primitive power is a primitive or a power expression in which the base is a primi-
tive and the exponent is a concrete positive integer greater than or equal to 2.

— A monic is the constant 1, a primitive power, or a product of two or more primitive
powers with distinct primitives. The factors of a monic are ordered by their primi-
tives.
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— A monomial is a constant, a monic, or the product of a non-0 constant and a monic
that is not one.

— An nt-polynomial (“non-trivial” polynomial) is a sum of two or more monomials, all
of which have distinct monics. The terms occur in order of increasing monic and the
leading coefficient is 1. Furthermore, there is no primitive which occurs as a factor
in every term.

A monomial is not an nt-polynomial. Instead, all nt-polynomials are primitives, so
can be used as “variables” in more complicated monics. The reason for this approach,
as opposed to the more natural approach of declaring monomials to be polynomials,
is that expansion is an expensive operation. Rather than requiring every operation to
expand polynomials, expansion can be carried out only when necessary. For example,
(X0 + X1)100 is in standard form: it is a primitive power in which the primitive base is
the nt-polynomial X0 + X1.

Finally, the standard form for any real expression is the rational expression:

— A rational expression is a monomial, or the quotient of a monomial and a monic
which is not 1. The monic of the numerator and the denominator can have no prim-
itive factor in common.

The following are the standard forms for numeric comparison operators:

— 0 < m
— 0  m
— m < 0
— m  0
— 0 = p
— 0 6= p

where p is a primitive and m is a monic in which all factors are primitives (i.e., the
maximum power of each factor is 1).

Standard properties of the real numbers allow every real or comparison expression
t1 to be transformed to a standard form t2 such that t1  t2. I omit the details, but give
a few examples:

(1) 2 ⇤ X0 + X1 is not in standard form. It is not an nt-polynomial because the leading
coefficient is not 1. Its standard form is 2 ⇤ (X0 + (1/2) ⇤ X1), which is a monomial
in which the constant is 2 and the monic is the nt-polynomial X0 + (1/2) ⇤ X1.

(2)
X0 + X1

2 ⇤ (X0 + X2)
is not in standard form because the denominator is not a monic. Its

standard form is
(1/2) ⇤ (X0 + X1)

X0 + X2
.

(3) (X0+X1)2 is in standard form, as is the equivalent expression X2
0 +2⇤(X0⇤X1)+X2

1 .
(4) 0 = X0 ⇤ X2

1 is not in standard form. Its standard form is 0 = X0 _ 0 = X1.
(5) 0 < X2

0 ⇤ X3
1 is not in standard form. Its standard form is 0 6= X0 ^ 0 < X1.

(6) 0  X6
0 is not in standard form. Its standard form is true.

2.3. Symbolic execution
I briefly review the main concepts from symbolic execution in a simple context; refer
to [Siegel and Zirkel 2011] for details.

2.3.1. States. A program defines some set V of typed variables. A concrete state of
the program consists of a value for the program counter, which specifies the current
control location of the program, and a valuation, which is a type-respecting map from
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V to some set Val of values. For example, a program with two integer variables u and v
has a concrete state

hl0; u 7! 6, v 7! 2i (1)
in which control is at some program location l0, u has the value 6, and v has value 2.

A symbolic state consists of a program counter; a boolean symbolic expression called
the path condition; and a symbolic valuation, which is a type-respecting map from
V to the set of symbolic expressions. A symbolic state represents a (possibly infinite)
set of concrete states—all concrete states obtained by substituting concrete values for
the symbolic constants in such a way that the path condition evaluates to true. The
program mentioned above has a symbolic state

hl0; X0 > X1; u 7! 2 ⇤ X0, v 7! X1i
in which control is at l0, the path condition is X0 > X1, u is assigned the symbolic
expression 2 ⇤ X0, and v is assigned X1. The set of concrete states represented by this
symbolic state contains concrete state (1), as the assignment X0 = 3, X1 = 2 causes the
path condition to evaluate to true.

2.3.2. Symbolic execution for program verification. Symbolic execution entails a reachabil-
ity analysis of a state-transition sytem in which the states are symbolic states and
transitions correspond to program statements. Each program statement must be in-
terpreted on the symbolic level in a way that is compatible with its concrete semantics.
For the most part, this is straightforward: e.g., an assignment x=e; is executed by
evaluating e symbolically, assigning the resulting symbolic expression to x in the new
state, and updating the program counter appropriately.

At a branch on a boolean expression c, two outgoing transitions are enabled: one
for the case where c is true and one for the case where c is false. To execute the true
transition, c is added to the path condition, i.e., the new value of the path condition is
the conjunction of the old value and the result of evaluating c. For the false transition,
¬c is added to the path condition. Hence the path condition keeps track of all the
choices made at branch points along an execution path.

Assertions are verified by checking the validity of the asserted formula  under the
assumption that the path condition � holds, i.e., by asking whether � )  is valid.
This validity implies that the assertion holds for all concrete states represented by
the symbolic state. If validity can be established for all reachable symbolic states, the
assertion holds on all reachable concrete states [Siegel and Zirkel 2011, Theorem 8].

2.3.3. State simplification. Two symbolic states are equivalent if they represent the same
set of concrete states. As with symbolic expressions, it is desirable to transform sym-
bolic states into an equivalent standard and/or simpler form. It can reduce the number
of symbolic states searched, because a state is more likely to be recognized as equiva-
lent to a state seen before. It can also improve the effectiveness of the validity checking.

The first step is to use standard form for all symbolic expressions occurring in the
state; as discussed above, this is always the case when using SARL. However, simpli-
fication of symbolic states can go much further. The techniques used by SARL include
the following:
(1) An interval analysis is applied to all monics in the path condition. This information

is then used to simplify occurrences of that monic throughout the state. In some
case this analysis obtains a single concrete value for the monic.

(2) When a concrete value is obtained for a symbolic constant, the value is substituted
for the symbol everywhere in the state, and the symbol is completely eliminated.

(3) The set of all numeric equalities derived from the path condition is treated as
a linear system of equations in which the “variables” are the monics. Gaussian
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elimination is applied to this system to obtain further concrete values for monics
and to eliminate some monics if they can be expressed as linear combinations of
the remaining monics.

(4) When a sequence of array-write operations over an array is complete (i.e., there is
a write to every cell), the entire expression is replaced by a concrete array.

(5) Since symbolic constants can appear and disappear from the state (e.g., due to
dynamic memory allocation, or control leaving a scope), at certain points they are
renamed in a canonical way (e.g., X0, X1, . . . ).

The state simplification process is one of the most expensive operations performed by
the CIVL verifier. However, it is quite effective and often the vast majority of validity
queries are resolved by simplification alone. This greatly reduces the number of calls
to external provers.

3. CHALLENGE 1: MATRIX MULTIPLICATION
The first challenge involved matrix multiplication of square matrices. There were three
tasks to the challenge.

3.1. Task 1: Specification and verification of a “naı̈ve” algorithm
Task 1 presented pseudocode for a “naive” version of matrix multiplication:

int[][] matrixMultiply(int[][] A, int[][] B) {
int n = A.length;
// initialise C
int[][] C = new int[n][n];
for (int i = 0; i < n; i++) {
for (int k = 0; k < n; k++) {
for (int j = 0; j < n; j++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}
return C;

}

The task was to “[p]rovide a specification to describe the behaviour of this algorithm,
and prove that it correctly implements its specification.”

My solution is given in Figure 2. The function matrixMultiply in the solution is
nearly identical to the pseudocode, with some small changes, e.g., a pointer to the
output matrix has been made a parameter to the function, in a typical C style. The
remaining code sets up a general environment, provides some auxiliary functions for
the specification, and implements a driver with an assertion to test the correctness of
the output.

Several of the global variable declarations use the CIVL-C $input type qualifier.4
An input variable represents a program input. The variable is initialized using the
following protocol: first, if a value for that variable is specified on the command line,
that value is used. For example,

civl verify -inputBOUND=10 mmp1.cvl

4Like all CIVL-C language primitives not in standard C, the name of this primitive starts with $. Also, C
and CIVL-C keywords appear in blue text in this article.
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1 #include <civlc.cvh>
2 $input int BOUND; // upper bound on N

3 $input int N; // the size of the matrices

4 $assume(1<=N && N<=BOUND);
5 $input float A0[N][N], B0[N][N], C0[N][N]; // arbitrary input matrices

6 void matrixMultiply(int n, float C[][], float A[][], float B[][]) {
7 for (int i=0; i<n; i++)
8 for (int j=0; j<n; j++)
9 C[i][j] = 0.0;

10 for (int i=0; i<n; i++)
11 for (int k=0; k<n; k++)
12 for (int j=0; j<n; j++)
13 C[i][j] += A[i][k] * B[k][j];
14 }
15 float dot(int n, float u[], float v[]) {
16 float sum = 0;
17 for (int i=0; i<n; i++) sum += u[i]*v[i];
18 return sum;
19 }
20 // gets the index-th column of matrix mat:

21 float * column(int n, float result[], float mat[][], int index) {
22 for (int i=0; i<n; i++) result[i] = mat[i][index];
23 return &result[0];
24 }
25 int main() {
26 float actual[N][N], tmp[N];
27 matrixMultiply(N, actual, A0, B0);
28 for (int i=0; i<N; i++)
29 for (int j=0; j<N; j++)
30 $assert(dot(N, A0[i], column(N, tmp, B0, j)) == actual[i][j]);
31 }

Fig. 2. Challenge 1, part 1: “naı̈ve” matrix multiplication (mmp1.cvl)

specifies a value of 10 for variable BOUND. If no value is specified on the command line
but an initializer is present, the initializer is used; this is a good way to provide a
default value. Finally, if neither the command line value nor an initializer is present,
the variable is assigned an arbitrary, unconstrained value of its type; for symbolic
execution, this is accomplished by assigning the variable a fresh symbolic constant.
All input variables are read-only.

In the solution, BOUND is used in an assumption to place an upper bound on N. Hence
the command above will verify the program for all matrices of size 10 or smaller. If no
concrete value of BOUND is provided, the verifier will run forever (or until it runs out of
memory).

The idea for the specification is that the (i, j)-th entry of the product should be the
dot product of the i-th row of A and the j-th column of B. To do this I implemented a
function to extract a column from a matrix and a function to compute the dot product
of two vectors. The assertion checks this for all (i, j). There is no difficulty in verifying
this: all of the assertions follow immediately from the standard form. One can insert a
printf statement between lines 29 and 30 to see the symbolic expressions; the output
begins

C[0][0] =
X_A0[0][1]*X_B0[1][0]+X_A0[0][2]*X_B0[2][0]+X_A0[0][3]*X_B0[3][0]+
X_A0[0][4]*X_B0[4][0]+X_A0[0][5]*X_B0[5][0]+X_A0[0][6]*X_B0[6][0]+
X_A0[0][7]*X_B0[7][0]+X_A0[0][8]*X_B0[8][0]+X_A0[0][9]*X_B0[9][0]+
X_A0[0][0]*X_B0[0][0]

The final output gives the result and several statistics:

CIVL v1.7 of 2016-03-31 -- http://vsl.cis.udel.edu/civl
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1 ... declaration of inputs and definition of matrixMultiply from Figure 2 ...

2 void main() {
3 $atomic {
4 float T1[N][N], T2[N][N], R1[N][N], R2[N][N];
5 matrixMultiply(N, T1, A0, B0); // T1 <- A0*B0

6 matrixMultiply(N, R1, T1, C0); // R1 <- T1*C0

7 matrixMultiply(N, T2, B0, C0); // T2 <- B0*C0

8 matrixMultiply(N, R2, A0, T2); // R2 <- A0*T2

9 $assert($equals(&R1, &R2)); // check deep equality of two objects

10 }
11 }

Fig. 3. Challenge 1, part 2: associativity of matrix multiplication (mmp2.cvl)

=== Command ===
civl verify -inputBOUND=10 mmp1.cvl

=== Stats ===
time (s) : 4.74
memory (bytes) : 163053568
max process count : 1
states : 35127
states saved : 11747
state matches : 0
transitions : 35126
trace steps : 11746
valid calls : 190978
provers : cvc4, z3, cvc3
prover calls : 37

=== Result ===
The standard properties hold for all executions.

The output indicates that the verification time is just under 5 seconds. The “standard
properties” include all of the safety properties listed in Section 1 and in particular
indicate that the assertion can never be violated.

3.2. Task 2: Verifying associativity
The second task was to “[s]how that matrix multiplication is associative, i.e., the order
in which matrices are multiplied can be disregarded: A(BC) = (AB)C. To show this,
you should write a program that performs the two different computations, and then
prove that the result of the two computations is always the same.”

The solution is given in Figure 3 and solves the problem exactly as specified. Verifi-
cation time is 10 seconds for BOUND = 10. The solution uses a special CIVL-C function
$equals, which accepts two pointers to C objects and tests for “deep equality.” The def-
inition is what you would expect: two arrays are “equal” if they have the same length
and corresponding elements are “equal”, two floats are “equal” if they are the same
rational number, etc. Again, the assertion is completely resolved by the standard form
for nt-polynomials, in particular the unique ordering for arguments to + and ⇤.

The body of the main function is placed in an $atomic block. This primitive is typi-
cally used in concurrent programs and prevents other processes from executing while
one process is in the atomic region. A side-effect of CIVL’s $atomic is that it reduces
the number of state canonicalizations, which can make a significant performance dif-
ference, even in sequential programs. I have used it in the revised solutions because it
decreases the verification time.
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3.3. Task 3: Equivalence of the naı̈ve and Strassen algorithms for matrix multiplication
The third challenge dealt with Strassen’s matrix multiplication algorithm, which is
real-equivalent to the naive algorithm but requires fewer multiplications and has
slightly smaller asymptotic time complexity. The challenge statement referred par-
ticipants to [Wikipedia 2016] for general information on the algorithm, and to [Thoma
2013] for code implementing the algorithm in several languages. The challenge was
to prove the equivalence of the naive and Strassen’s algorithm for arbitrary square
matrices with size a power of 2.

My solution is given in Figure 4. Verification time is 4 seconds for BOUND = 8, and
93 seconds for BOUND = 16. Function strassenR is a direct transliteration of the Java
code from the given web page. The environment creates arbitrary input matrices as
before, but restricts to sizes which are a power of 2. LEAF_SIZE is another parameter
used in [Thoma 2013]; it is the threshold below which ordinary matrix multiplication is
used. It wasn’t immediately clear to me what the appropriate values for this parameter
were, but verification succeeded using the range 2..N, and I have kept this range in the
revision. A lower bound of 1 will also work, though verification time goes up to 8s for
BOUND = 8 and 375s for BOUND = 16.

The solution uses CIVL’s $elaborate function, which consumes a positive integer
n. Semantically, this function is a no-op, but it signals the verifier to use a different
search strategy. The verifier generates a sequence of transitions, all departing from the
current state. The first assumes n = 0, the next n = 1, and so on. The verifier must be
able to determine a concrete upper bound on n from the current path condition for this
to succeed. The effect is to eliminate a symbolic constant from the state by exploring
separate cases for all of its possible concrete values. This can increase the number
of states, but simplify the symbolic expressions and prover queries. It is difficult to
predict whether this strategy will be a net win, so CIVL leaves it up to the user. In this
case it decreases verification time significantly.

3.4. Discussion
The differences between the revised solutions presented here and my original sub-
mission are relatively minor. Besides formatting and stylistic changes, the original
solution was in one file, which I broke up into three separate files here in order to get
more precise timings. I also added some atomic statements for better performance.

I missed the fact that the problem called for matrices with integer entries, and used
floats instead. It would be trivial to change the floats to ints. However this brings
up an important issue, which is the difference between floating-point and real number
semantics. CIVL currently interprets all floating point operations as real arithmetic,
which is why it declared these programs correct. With floating-point semantics, the
associativity of matrix multiplication (task 2) fails to hold, since floating-point mul-
tiplication is not associative. Similarly, Strassen’s algorithm (task 3) is not floating-
point-equivalent to the naive algorithm. These discrepancies are not due to bugs—it is
well known that Strassen’s algorithm, for example, has floating-point characteristics
that differ from that of the naive algorithm, but it is expected that it—or any “correct”
matrix multiplication algorithm—be real-equivalent to the naive one. Clearly, floating-
point semantics are useful for specifying some properties of numerical programs, and
real semantics are useful for specifying others. We need tools that can handle both.

The specification in task 1 was essentially accomplished using more C code. This
worked, but arguably the new C code is at least as complex as the original code be-
ing verified. While there can be advantages to using the programming language as
the specification mechanism, in this case I feel a better solution could be constructed
if there were additional specification primitives, in particular a “sum” operator, as in
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1 ... declaration of inputs and definition of matrixMultiply from Figure 2 ...

2 $input int LEAF_SIZE; // threshold below which ordinary matrix multiplication is used

3 $assume (2 <= LEAF_SIZE && LEAF_SIZE <= N);
4 void add(int n, float C[][], float A[][], float B[][]) {
5 for (int i=0; i<n; i++) for (int j=0; j<n; j++) C[i][j] = A[i][j] + B[i][j];
6 }
7 void subtract(int n, float C[][], float A[][], float B[][]) {
8 for (int i=0; i<n; i++) for (int j=0; j<n; j++) C[i][j] = A[i][j] - B[i][j];
9 }

10 // Strassen algorithm from https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/

11 void strassenR(int n, float C[][], float A[][], float B[][]) { // requires n is power of 2

12 if (n <= LEAF_SIZE) {
13 matrixMultiply(n, C, A, B);
14 } else {
15 int m = n/2;
16 float a11[m][m], a12[m][m], a21[m][m], a22[m][m];
17 float b11[m][m], b12[m][m], b21[m][m], b22[m][m];
18 float aResult[m][m], bResult[m][m];
19 for (int i=0; i<m; i++)
20 for (int j=0; j<m; j++) {
21 a11[i][j] = A[i][j]; a12[i][j] = A[i][j + m];
22 a21[i][j] = A[i+m][j]; a22[i][j] = A[i + m][j + m];
23 b11[i][j] = B[i][j]; b12[i][j] = B[i][j+m];
24 b21[i][j] = B[i+m][j]; b22[i][j] = B[i+m][j+m];
25 }
26 add(m, aResult, a11, a22); add(m, bResult, b11, b22);
27 float p1[m][m]; strassenR(m, p1, aResult, bResult); add(m, aResult, a21, a22);
28 float p2[m][m]; strassenR(m, p2, aResult, b11); subtract(m, bResult, b12, b22);
29 float p3[m][m]; strassenR(m, p3, a11, bResult); subtract(m, bResult, b21, b11);
30 float p4[m][m]; strassenR(m, p4, a22, bResult); add(m, aResult, a11, a12);
31 float p5[m][m]; strassenR(m, p5, aResult, b22); subtract(m, aResult, a21, a11);
32 add(m, bResult, b11, b12);
33 float p6[m][m]; strassenR(m, p6, aResult, bResult); subtract(m, aResult, a12, a22);
34 add(m, bResult, b21, b22);
35 float p7[m][m]; strassenR(m, p7, aResult, bResult);
36 float c12[m][m]; add(m, c12, p3, p5);
37 float c21[m][m]; add(m, c21, p2, p4); add(m, aResult, p1, p4);
38 add(m, bResult, aResult, p7);
39 float c11[m][m]; subtract(m, c11, bResult, p5); add(m, aResult, p1, p3);
40 add(m, bResult, aResult, p6);
41 float c22[m][m]; subtract(m, c22, bResult, p2);
42 // Grouping the results obtained in a single matrix:

43 for (int i=0; i<m; i++)
44 for (int j=0; j<m; j++) {
45 C[i][j] = c11[i][j]; C[i][j+m] = c12[i][j];
46 C[i+m][j] = c21[i][j]; C[i+m][j+m] = c22[i][j];
47 }
48 }
49 }
50 _Bool isPowerOf2(int n) {
51 while (n>1) {
52 if (n%2 != 0) return $false;
53 n = n/2;
54 }
55 return $true;
56 }
57 int main() {
58 $atomic {
59 $elaborate(N); // hint to verifier: iterate over concrete values of this variable

60 $assume(isPowerOf2(N));
61 float R1[N][N], R2[N][N];
62 matrixMultiply(N, R1, A0, B0);
63 strassenR(N, R2, A0, B0);
64 $assert($equals(&R1, &R2));
65 }
66 }

Fig. 4. Challenge 1, part 3: equivalence of Strassen’s algorithm (mmp3.cvl)
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Pb
i=a. (The ACSL specification language [ACSL 2016] specifies such an operator.) One

could even imagine adding a number of standard operators from functional program-
ming languages, like fold, reduce, and filter. These could lead to shorter and more
intuitive specifications. On the other hand, the use of CIVL-C’s $equals primitive was
extremely useful for comparing two matrices, avoiding the need for iteration over every
entry.

The careful reader may have noticed a little twist in the naive algorithm: the last
two loops have been transposed from their usual order. At the discussion session, it
was clear this complicated deductive approaches—in particular, the construction of
appropriate loop invariants. In contrast, it makes no difference at all to the symbolic
execution approach used here. I don’t believe I even noticed this twist until after the
competition.

4. CHALLENGE 2: BINARY TREE TRAVERSAL
The second challenge dealt with a binary tree

class Tree {
Tree left, right, parent;
bool mark;

}

with the properties

— “following a child pointer (left or right) and then following a parent pointer brings
us to the original node”

— “the parent pointer of the root is null”
— “It has at least one node, and each node has 0 or 2 children”
— “We do not know the initial value of the mark fields”
and gave an algorithm [Morris 1979] for traversing the nodes in linear time but con-
stant space:
void markTree(Tree root) {

Tree x, y;
x = root;
do {
x.mark = true;
if (x.left == null && x.right == null) {
y = x.parent;

} else {
y = x.left;
x.left = x.right;
x.right = x.parent;
x.parent = y;

}
x = y;

} while (x != null);
}

The tasks are to prove:

(1) “upon termination of the algorithm, all mark fields are set”
(2) “the tree shape does not change”
(3) “the code does not crash”
(4) “the code terminates”
(5) “the nodes are visited in depth-first order” (bonus).
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1 #include <civlc.cvh>
2 #include <stdbool.h>
3 #include <stdlib.h>
4 $input int DB; // depth bound

5 typedef struct _tree { struct _tree *left, *right, *parent; _Bool mark; } *Tree;
6 void markTree(Tree root) { // mark every node, using only constant space

7 Tree x=root, y;
8 do {
9 x->mark = true;

10 if (x->left == NULL && x->right == NULL) { y = x->parent; }
11 else { y = x->left; x->left = x->right; x->right = x->parent; x->parent = y; }
12 x = y;
13 } while(x != NULL);
14 }
15 Tree makeTree(Tree left, Tree right, _Bool mark) { // makes a new tree

16 Tree result = (Tree)malloc(sizeof(struct _tree));
17 result->left = left; result->right = right; result->mark = mark; result->parent = NULL;
18 if (left != NULL) left->parent = result;
19 if (right != NULL) right->parent = result;
20 return result;
21 }
22 Tree makeArbitrary(int depth) { // construct an arbitrary tree with height < "depth"

23 if (depth == 0) return NULL;
24 // nondeterministic choice: 0: return tree with 0 nodes, 1: return tree with 2 nodes

25 if ($choose_int(2) == 0) return makeTree(NULL, NULL, false);
26 return makeTree(makeArbitrary(depth - 1), makeArbitrary(depth - 1), false);
27 }
28 Tree copyTree(Tree root) { // deep copy a tree, ignoring marks

29 if (root == NULL) return NULL;
30 return makeTree(copyTree(root->left), copyTree(root->right), false);
31 }
32 void freeTree(Tree root) { // free memory allocated by making a tree

33 if (root != NULL) { freeTree(root->left); freeTree(root->right); free(root); }
34 }
35 _Bool allMarked(Tree t) { // checks every node in Tree t is marked

36 if (t != NULL) {
37 if (!(t->mark)) return false;
38 if (!allMarked(t->left)) return false;
39 if (!allMarked(t->right)) return false;
40 }
41 return true;
42 }
43 _Bool wellFormed(Tree t) { // all non-leaf nodes u: u==u->left->parent==u->right->parent

44 if (t->left != NULL) {if (t->left->parent!=t || !wellFormed(t->left)) return false;}
45 if (t->right != NULL) {if (t->right->parent!=t || !wellFormed(t->right)) return false;}
46 return true;
47 }
48 _Bool isomorphic(Tree t1, Tree t2) { // given two well-formed trees, are they isomorphic?

49 if (t1 == NULL) return t2 == NULL;
50 if (t2 == NULL) return false;
51 if (!isomorphic(t1->left, t2->left)) return false;
52 return isomorphic(t1->right, t2->right);
53 }
54 int main() {
55 $atomic {
56 Tree t1 = makeArbitrary(DB), t2 = copyTree(t1); // create arbitrary tree, save a copy

57 $assume(t1 != NULL);
58 markTree(t1); // markTree should mark every node and not change the shape

59 $assert(allMarked(t1)); $assert(t1->parent == NULL); $assert(wellFormed(t1));
60 $assert(isomorphic(t1, t2)); // check that the shape of t1 has not changed

61 freeTree(t1); freeTree(t2);
62 }
63 }

Fig. 5. Challenge 2: binary tree traversal (tree.cvl)
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My solution is shown in Figure 5. The program will explore all trees for which the
number of edges along any path from the root to a leaf is less than DB. Verification
takes about 3s for DB = 4 and 77s for DB = 5.

Function markTree is virtually identical to the code given in the challenge. To this
I added a constructor makeTree, and a function makeArbitrary which uses nondeter-
ministic choice to create an arbitrary tree satisfying the assumptions given in the
challenge. The function $choose_int consumes an integer n and returns an integer in
0..n � 1; when verifying a program, all possible choices are explored. The remaining
functions are used to specify the desired properties of the algorithm.

Function allMarked checks that all the mark fields are set. It recurses over all nodes
and returns false if any unmarked node is found.

To check that the shape of t1 does not change, a deep copy t2 of the original tree
is made using copyTree. This is compared with t1 after markTree(t1). The function
isomorphic consumes two tree-or-nulls and checks that either both are null or the
corresponding children are isomorphic. In my original solution, I thought this sufficed,
but the organizers pointed out it would declare the following two structures to have
the same shape:

In the revision, I have corrected this by checking that in t1, the root has null parent,
and for any node u, the parent of a child of u is u. (These necessarily hold for t2.) This
implies that every node is a child of at most one node, and the root is a child of no
node. It follows that isomorphic establishes a structure-preserving bijection between
the nodes of the two trees.

The only way that the code of markTree could crash is from an invalid or null pointer
dereference. The CIVL verifier checks every dereference for these anomalies, so the
code cannot crash for any tree within the specified bound.

CIVL does not have a specific mechanism to verify termination or other liveness
properties. It does verify absence of deadlocks, but a program can fail to terminate
without deadlocking because of an infinite loop. There are, however, a few “tricks”
that can sometimes be used to verify termination. The first is to run the verifier with
the flag -saveStates=false. This instructs the verifier not to save seen states as it
searches the state space. If there is a cycle in the state space, this will cause the verifier
to run forever. Hence if the verifier returns and reports all properties hold (in particu-
lar, absence of deadlock), every execution must terminate. Doing this for tree.cvl with
DB = 4 leads the verifier to return after 47s. This represents a significant slow-down,
due to the large number of states that are traversed multiple times, but establishes
termination for trees within this bound. I did not try this for DB = 5.

The second trick is to modify the program by adding counters to loops. I inserted int
count=0; after line 7 and count++; after 8. If the do..while loop could loop forever, the
verifier would never return (even with saving of states), because every iteration yields
a new state. Running this modified program, the verifier returned for both DB = 4 and
DB = 5 with no noticeable slow-down.

I never attempted the bonus task on depth-first order.

4.1. Structure of the state: recursion, pointers, and dynamically-allocated memory
As this example illustrates, CIVL has no problem verifying programs with recursive
functions, dynamically allocated data structures, and pointers, as long as the call stack
and heap cannot grow without bound. A CIVL state has a complex and dynamic struc-
ture, as illustrated in Figure 6. New dynamic scopes are added whenever control enters
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Fig. 6. Structure of a state for tree.cvl

a static scope, and are removed when control exits the static scope. Each dynamic scope
stores the (symbolic) values of variables declared in that scope. In the pictured state,
the large dynamic scope at the top is the global scope, which also contains the heap.
Because of recursion, there can be multiple instances of a single static scope: three in-
stantiations of the function scope for allMarked in this example. The call stack consists
of a sequence of frames, each of which includes a reference to a dynamic scope and a
program counter value.

A pointer is represented as a triple (d, i, r), where d is the ID number of a dynamic
scope, i is the ID of a variable within that scope, and r is a reference expression. A refer-
ence expression is a symbolic expression that specifies a “path” to an internal point of a
compound value, such as “array element 5 of tuple component 3 of tuple component 0.”
These expressions are supported by SARL, which provides methods to build and ma-
nipulate them, and a method to “apply” a reference expression to a symbolic expression
of the appropriate compound type in order to extract the specified subexpression. This
last method is used to implement pointer dereferencing. CIVL also supports most, but
not all, forms of pointer arithmetic permitted under the C Standard.

5. CHALLENGE 3: TREE BARRIER
The third challenge was a concurrency problem: verification of a tree barrier. The num-
ber N of threads is fixed. There is also a fixed binary tree in which the nodes correspond
to threads:
class Node {

final Node left, right;
final Node parent;
boolean sense;
int version;
... methods ...

}

This node class has a barrier method which is called by each thread to create a global
synchronization point:
void barrier()

requires !sense
ensures !sense

{
// synchronization phase
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if (left != null) while (!left.sense) { }
if (right != null) while (!right.sense) { }
sense = true; // assume this statement and the next to execute
version++; // simultaneously (that is, in one step)
// wake-up phase
if (parent == null) sense = false;
while(sense) { }
if (left != null) left.sense = false
if (right != null) right.sense = false

}

When a thread enters the barrier, it waits for a signal from its children indicating
that they and their descendants have entered the barrier. Then the thread signals its
parent. When the root receives this signal, it knows all threads have arrived, and the
signal then travels down the tree, freeing threads to leave the barrier.

The challenge continues: “Assume a state in which sense is false and version is zero
in all nodes. Assume further that no thread is currently executing barrier() and that
threads invoke barrier() only on their nodes. The number of threads (and, thus, the
number of nodes in the tree) is constant, but unknown” and specifies two tasks: to
prove

(1) the following invariant holds in all states: If n.sense is true for any node n then
m.sense is true for all nodes m in the subtree rooted in n.

(2) for any call n.barrier(), if the call terminates then there was a state during the
execution of the method where all nodes had the same version.

My solution is given in Figure 7. Verification time is 13s for N = 4 and 173s for N = 5.
The solution uses several CIVL-C concurrency primitives. The $spawn expression

(line 63) wraps a function call, and creates a new process (or thread) to execute the call.
The new process has its own call stack and the single frame on that stack will point to
a new dynamic scope corresponding to the function body—the same scope that would
be created by an ordinary function call. Evaluation of the $spawn expression returns
immediately with a reference to the new process, an object of type $proc. Figure 8
shows the structure of a typical state in barrier.cvl.

In the solution, I have added a field p to the node structure (line 6). The value re-
turned by $spawn is assigned to that field in the node corresponding to the new process.
This is used later as an argument to the $wait function (line 64), which blocks until
the referenced process terminates. This is the only place where the field is used, so the
modification to the node structure could have been avoided by storing the $proc values
in a local array instead. Even better: CIVL-C provides the $parfor primitive, which
captures the common pattern of lines 63–64; those lines can be replaced with

$parfor (int i : 0 .. N-1) thread(theNodes[i]);

In addition to $wait, synchronization takes place though guarded commands, which
have the form $when (expr ) stmt . This command blocks until expr evaluates to true,
then executes stmt; the first atomic sub-step of stmt executes atomically with the test-
ing of the guard expression. This basic concurrency primitive can be used to implement
semaphores, locks, and other higher-level concurrency constructs. For the guarded
commands in the solution, the stmt is just a no-op. These are used in place of the
pseudocode’s busy-wait loops.

Another CIVL-C feature not in standard C is the ability to nest function definitions.
In the solution, function barrier is placed inside function thread. The body of thread
(line 39) may invoke barrier, but code outside of thread may not. Moreover, barrier
may read and modify the local variables of thread, e.g., myNode. These internal func-
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1 #include <civlc.cvh>
2 #include <stdlib.h>
3 #include <stdbool.h>
4 $input int N; // the number of nodes (tried with N=1,2,3,4,5)

5 typedef struct _node { // a node in a binary tree

6 $proc p; // the process to which this node is associated

7 struct _node *left, *right *parent; // left child, right child, and parent

8 _Bool sense; // am I in the barrier?

9 int version; // number of times I have gone through barrier

10 } * Node;
11 Node theNodes[N]; // array storing all nodes created so far

12 int count = 0; // number of nodes created so far

13 void checkDescendantsSensesTrue(Node u) { // check all senses in u and descendants are true

14 if (u != NULL) {
15 $assert(u->sense);
16 checkDescendantsSensesTrue(u->left); checkDescendantsSensesTrue(u->right);
17 }
18 }
19 void checkAncestorSensesFalse(Node u) { // check all senses in u and ancestors are false

20 while (u != NULL) { $assert(!u->sense); u = u->parent; }
21 }
22 void thread(Node myNode) { // the function each thread will run

23 void barrier() { // the barrier function

24 if (myNode->left != NULL) $when (myNode->left->sense); // wait for left child’s sense

25 if (myNode->right != NULL) $when (myNode->right->sense);
26 $atom {
27 myNode->sense = true;
28 checkDescendantsSensesTrue(myNode); // check invariant

29 myNode->version++;
30 if (myNode->parent == NULL) // root: check everyone has same version

31 for (int i=0; i<N; i++) $assert(theNodes[i]->version == myNode->version);
32 }
33 if (myNode->parent == NULL) myNode->sense = false;
34 $when (!myNode->sense); // wait until my sense is false

35 $atom { checkAncestorSensesFalse(myNode); } // check invariant

36 if (myNode->left != NULL) myNode->left->sense = false;
37 if (myNode->right != NULL) myNode->right->sense = false;
38 }
39 for (int i=0; i<3; i++) barrier(); // driver: run around the barrier 3 times...

40 }
41 Node makeTree(Node left, Node right) { // make a tree from given children

42 Node result = (Node)malloc(sizeof(struct _node));
43 result->left = left; result->right = right; result->sense = false; result->version = 0;
44 if (left != NULL) left->parent = result;
45 if (right != NULL) right->parent = result;
46 result->parent = NULL;
47 return result;
48 }
49 Node makeArbitraryTree(int numNodes) { // create an arbitrary tree with numNodes nodes

50 if (numNodes == 0) return NULL;
51 int leftSize = $choose_int(numNodes);
52 Node leftTree = makeArbitraryTree(leftSize);
53 Node rightTree = makeArbitraryTree(numNodes - leftSize - 1);
54 Node result = makeTree(leftTree, rightTree);
55 theNodes[count] = result; count++;
56 return result;
57 }
58 void freeTree(Node tree) { // free all nodes in the tree

59 if (tree != NULL) { freeTree(tree->left); freeTree(tree->right); free(tree); }
60 }
61 int main() {
62 Node theTree = makeArbitraryTree(N);
63 $atomic { for (int i=0; i<N; i++) theNodes[i]->p = $spawn thread(theNodes[i]); }
64 for (int i=0; i<N; i++) $wait(theNodes[i]->p);
65 freeTree(theTree);
66 }

Fig. 7. Challenge 3: tree barrier (barrier.cvl)
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tions can be spawned just like any other function. While this feature is not used in the
challenges, it is used extensively in other applications of CIVL, specifically to repre-
sent so-called “hybrid” parallel programs that use multiple levels of concurrency, such
as multi-threaded MPI programs, or CUDA-C programs.

The thread function invokes the barrier three times. This use of 3 is arbitrary; it
should be another parameter to the model. Some bound must be used, because the
version field is incremented with each call and can therefore increase without bound—
i.e., there would be an infinite number of states.5

The exact number of nodes N is specified as an input, and an arbitrary binary tree
with N nodes is constructed. Verification time for N = 4 is 15s; N = 5 takes 203s.

CIVL checks automatically that the program does not deadlock, though the chal-
lenge did not specifically ask this.

The first task is to prove an invariant—a property that holds at every state. CIVL
does not provide a way to specify invariants, but I was able to approximate this using
assertions. The claim is that at any state, for any node n, if n.sense holds then m.sense
holds for all descendants m of n. At the point just after sense is set to true, I inserted
a function that checks that all descendants of myNode have true sense. Moreover, at
the point just after waiting for sense to become false, I inserted a function that checks
that all ancestors of myNode have false sense (this function was added in the revision).
Putting these together, one has something very close to the requested invariant.

The second task is to show there is a state at which all nodes have the same version.
It seemed to me that such a state would occur just as the root increments its version.
I inserted code at this point to check this assertion. However, in the original statement
of the challenge, the comment about the two statements sense=true and version++
executing simultaneously did not appear, and my draft solution therefore did not in-
clude those two statements within an $atomic block. CIVL reported a violation of the
assertion.

One of the purported advantages of model checking is its ability to generate a coun-
terexample execution trace when a property is violated. This was certainly the case
here. I have also found that the ability to produce minimal counterexamples is ex-
tremely useful for defect understanding. So I set N = 2 and ran the verifier with the
-min flag, which instructs the verifier to find a path of minimal length to a violating
state. The file barrier_bad.cvl, included in the experimental archive, demonstrates

5In other barrier examples distributed with CIVL, the driver is actually an infinite loop, yet the verifier still
converges because the number of states is finite, so the loop will eventually reach states seen before.
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this strategy. The minimal counterexample consists of 49 trace steps, the first 36 of
which deal with the initialization phase of the program. After finding the counterex-
ample, the trace can be replayed using the command

civl replay -showTransitions barrier_bad.cvl

to show the step-by-step sequence leading to the violation. An excerpt of the final part
of the trace follows:

Step 43: Executed by p1 from State 43:
53->54: (*(&<d0>heap.malloc0[0][0])).sense=true ...

Step 47: Executed by p2 from State 47:
53->54: (*(&<d0>heap.malloc0[1][0])).sense=true ...

Step 48: Executed by p2 from State 48:
54->55: ENTER_ATOMIC [_atomic_lock_var:=p2, p2.atomicCount:=1]
55->56: (*(&<d0>heap.malloc0[1][0])).version=0+1
56->57: TRUE_BRANCH_IF (guard: (void*)0==((struct _node)*)0)
57->58: i=0 at barrier_bad.cvl:38.6-12 "int i=0"
58->59: LOOP_BODY_ENTER (guard: 0<2) at barrier_bad.cvl:38.15-17 "i<N"

Error 0:
CIVL execution violation in p2 (kind: ASSERTION_VIOLATION, certainty: PROVEABLE)
at barrier_bad.cvl:38.25-72 "$assert(theNodes[i]->version ... )":
Assertion: ((*((theNodes)[i])).5==(*(myNode)).5)

-> 0==1
-> false

Step 49: Trace ends after 49 trace steps.
Violation(s) found.

In this trace, p1 sets its sense to true, then the root process p2 intervenes, enters the
barrier, sets its sense to true, and increments its version from 0 to 1. At this point, p2
checks the assertion and discovers that p1’s value of 0 differs from its value of 1.

By examining this trace, it became clear that the two statements should happen
atomically. I notified the organizers, as did one other participant (Bart Jacobs), and
the organizers quickly fixed the statement. I was not able to complete the second task
in time, but did so shortly after the competition. With the two statements inside an
$atomic block, CIVL was able to verify the complete program for N  5.

6. CONCLUSION
I have presented CIVL solutions to the VerifyThis 2016 challenges that address almost
all of the tasks. In each case, CIVL was able to verify the specified properties within
small but non-trivial bounds, e.g., 16 ⇥ 16 matrices for Strassen multiplication, binary
trees with height at most 4 for Morris’ tree traversal algorithm, and up to 5 threads for
the tree barrier. The verification runtimes range from a few seconds to a few minutes.

I believe the solutions provide some evidence for the usability of CIVL by program-
mers of moderate skill. The solutions are short, and do not require much knowledge
beyond basic C. A few new primitives and concepts are needed, but these are minimal
and do not require great conceptual leaps. The bulk of the work involves setting up
a general environment and driver, which is similar to the work involved in ordinary
program testing.

Detailed comparisons with other tools are beyond the scope of this paper, but a look
at some of the other solutions can give a feel for the differences between deductive
approaches and that of CIVL.

CIVL was the only tool to solve the Strassen task during the competition. After-
wards, three participants used Why3 [Filliâtre and Paskevich 2013] to construct a
complete solution to challenge 1. The solution includes an implementation and proof
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of a version of Strassen’s algorithm for square matrices of any size, not just powers
of 2; see [Clochard et al. 2016a] and [Clochard et al. 2016b]. The solution consists
of over 1000 lines of WhyML code, including function contracts, predicate, type, and
function definitions, invariants, axioms, lemmas, and theories—including an axiomatic
theory of matrix arithmetic which could be re-used in other contexts. All of the verifica-
tion conditions generated from this system are discharged by fully automatic theorem
provers. This is a landmark achievement, but certainly required a level of sophistica-
tion beyond that of a typical programmer, as well as a good deal of effort.

Solutions to challenges 2 and 3 using VeriFast are also notable [Jacobs 2016]. These
consist of Java code with annotations in a language based on separation logic. The
annotations are used to construct a proof which is automatically checked by VeriFast.
The solution to challenge 2 is complete (excluding the bonus task on depth-first order)
and includes 92 non-whitespace annotation lines in addition to the implementation
code. The solution to challenge 3 does not address the second task on the consistency
of the version number, but is otherwise complete; it uses over 220 non-whitespace
annotation lines.

The cognitive process is also different. Construction of a proof requires a deep un-
derstanding of the algorithm. This was evident in the post-competition discussion and
in the solutions mentioned above. The user who succeeded in constructing a proof
ended up understanding exactly why the Morris algorithm works, why the Strassen
algorithm computes the product of the two matrices, and so on. In contrast, the user
of CIVL can almost treat the algorithm as a black box. The exception is when some-
thing goes wrong, such as the missing atomicity requirement in challenge 3. In that
case, CIVL’s ability to generate a minimal counterexample proved very useful in un-
derstanding the defect.

Several improvements to CIVL would help it solve problems like those discussed
here. These include:

— reporting the presence or absence of cycles in the state space
— additional specification primitives such as a $sum operator
— a way to specify invariants (properties expected to hold at every state), or even gen-

eral temporal properties
— a mechanism to help generate arbitrary trees and other dynamic data structures
— the ability to specify loop invariants and to use them to verify programs without

bounding input sizes.

The CIVL project is actively working on these and other improvements.
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Security by Compilation: An Automated Approach to Comprehensive
Side-channel Resistance
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We explain how formal verification and program synthesis can be used to (1) detect side-channel leaks of
software code running on portable devices, (2) prove the absence of side-channel leaks, and (3) transform
software to eliminate such leaks. We use power side-channel leaks in cryptographic software as examples,
but the underlying techniques are applicable to other types of side channels and software systems as well.

1. INTRODUCTION
Programmers often view the computing devices as blackboxes, but real computers leak
information of the software they execute through various side channels, e.g., variations
in power dissipation, radiation, execution time, and sound signature of the processor.
Side-channel information may be exploited by adversaries. For example, while cryp-
tographic algorithms may be secure against hundreds of years of brute-force attacks,
their actual implementations may be broken in hours or even minutes in the presence
of side-channel leaks.

Since the seminal work on differential power analysis [Kocher et al. 1999], many
similar techniques have been developed, making side-channel analysis (SCA) a real
threat to commercial hardware and software. Examples from the past few years in-
clude the use of SCA to extract secret keys from contactless smartcards [Kasper et al.
2011], keyless entry systems [Eisenbarth et al. 2008], secure memory modules [Bal-
asch et al. 2012], and field programmable gate arrays (FPGAs) [Moradi et al. 2011;
Skorobogatov and Woods 2012; Moradi et al. 2013]. Furthermore, new sources of side-
channel leakage and methods to exploit them are discovered on a regular basis. For
example, the sound made by a processor as it executes the public-key RSA algorithm
was found to be a viable side channel to reveal the secret key [Genkin et al. 2014]
— although a patch was quickly made and distributed, it is still worrisome that side-
channel leakage can be found in such widely distributed production software.

A fundamental difficulty in mitigating side-channel leaks is that their physical
sources are at the level of the processor hardware, an abstraction layer typically in-
visible to programmers. For example, data-dependent control flow in software will im-
pact the power dissipation of the processor hardware, but for an average programmer,
it may be difficult or even impossible to tell how much harmful side-channel leakage
would occur. A similar problem exists with the prediction of execution time, another
source of side-channel leakage, or the prediction of cache misses and their impact on
the execution time. Average programmers tend to view the computing device as an
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abstract machine while ignoring architectural details of the processor (such as out-
of-order execution) and storage (such as register allocation and cache), thus making
side-channel leakage a concept that is hard to grasp for them.

Current implementation of side-channel resistant software in embedded computing
applications relies on manual efforts of experts, but even for them, this process is com-
plex and error-prone. Furthermore, there are no techniques available to verify these
handcrafted implementations, let alone generating them automatically. Although au-
tomation is desirable, existing verification and synthesis techniques are not sufficient.
The reason is because, first, side-channel resistance is a non-functional property, which
cannot be handled by techniques developed for proving functional correctness [Clarke
et al. 1999; McMillan 1994]. Furthermore, unlike the non-interference property in
information-flow security [Sabelfeld and Myers 2003], side-channel resistance is a sta-
tistical property, which requires fundamentally new analysis techniques.

Step.1 Step.4

Step.3

Quantifying

Actual Leakage

Step.2

SC Leakage and Transformation

Automated Code Analysis

Embedded Software

CountermeasureSC Resistance

Verification Synthesis

Measuring

Security−critical 

Fig. 1. Automated approach to side-channel resistance.

We outline the development of a
new type of verification and program
synthesis techniques to aid in the
construction of side-channel resistant
software for embedded computing ap-
plications, e.g., cryptographic software
used in various cyber-physical systems
(CPS) and the Internet of things (IoT)
where physical security of the com-
puting devices is a major concern. As
shown in Fig. 1, the automated anal-
ysis and code transformation frame-
work consists of techniques being developed along the following directions:

— Quantifying side-channel leaks. First, we need to formally define what it means for
a piece of software to be side-channel resistant on a given platform, and in case it is
not side-channel resistant, how to quantify the amount of leakage.

— Verifying side-channel resistance. For existing and manually-secured software code,
we need new verification techniques to formally prove that the implementation is
indeed side-channel resistant.

— Synthesizing countermeasures. We also need program synthesis techniques for au-
tomatically generating functionally-equivalent, but side-channel resistant, software
code to replace the original code. They must go beyond simple compiler transforma-
tions, to handle unknown vulnerabilities and generate new implementations.

— Validation on real devices. Finally, the resulting software code must be validated on
real devices to ensure our modeling and synthesis accurately reflect side-channel
leaks observed in the physical world.

In the remainder of this article, we use power side-channel leaks in cryptographic
software as examples to illustrate our recent work on formally verifying side-channel
resistance [Eldib et al. 2014b; Eldib et al. 2014c] as well as synthesizing countermea-
sures [Eldib and Wang 2014b]. Then, we discuss how to extend these techniques to
handle other types of side channels and software systems.

2. PRELIMINARIES
We assume the software code implements a cryptographic function c  f(x, k), where
x is the plaintext, c is the ciphertext, and k is the secret key. The goal of the adversary
is to compute k based on knowledge of x and c as well as the information of internal
computations leaked through side channels.
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It is possible to implement c f(x, k) in a manner such that the side-channel leak-
age remains harmless, e.g., using the idea of secret sharing [Chari et al. 1999]. In this
approach, every internal variable v of the software program is split into n + 1 shares
v0, v2, . . ., vn such that v = v0 � v1 � . . . � vn, where � is a suitable masking operator,
e.g., the XOR operator in Boolean domain. Among these n + 1 shares, n are randomly
chosen masks and the remaining one is computed as a matching share. Since every
masked share vi is statistically independent of the original v, leakage of individual
shares or any combination of  n shares will not reveal v.

Splitting variables into shares affects the internal operations of the program. Thus,
we call the new program a masked program. Furthermore, the number of shares corre-
sponds to the order of masking, e.g., in an order-d masking, every variable is split into
d+ 1 shares. If f(x, k) were a linear function of k with respect to XOR, masking would
be straightforward, because f(x, k � r) � f(x, r) = f(x, k) � f(x, r) � f(x, r) = f(x, k).
That is, we can mask the sensitive k by the XOR with a random variable r before the
computation, and de-masking afterward by the XOR with f(x, r). However, in prac-
tice, f(x, k) is always a non-linear function, which means masking requires a complete
rewriting of the software code, and the process is labor-intensive and error-prone.

Threat Model. We assume an adversary knows the value of the plaintext x, the ci-
phertext c, and side-channel information of at most d intermediate computation re-
sults; they correspond to variables in the program. Let I1, I2, . . ., Id be the set of inter-
mediate results. Furthermore, each Ii(x, k, r) is a function in terms of x, k, and random
variable r introduced to mask the sensitive k. Thus, the adversary does not have ac-
cess to the value of r. However, if the side-channel leakage associated with Ii or any
combination of  d intermediate results is dependent of k, we say the implementation
of c f(x, k) is vulnerable to SCA based attacks.

A necessary condition for f(x, k) to be side-channel resistant is that all intermediate
computation results are either logically independent of k or logically dependent of (and
thus masked by) some random variable r. The condition seems reasonable and can be
easily checked [Bayrak et al. 2013]. However, it is a logical property (as opposed to
statistical property)—we will show that the condition is not sufficient for ensuring
side-channel resistance.

Leakage Model. A widely used power model is the Hamming Weight (HW) model,
which relates variations in the power dissipation of the processor to values of its reg-
isters, which in turn hold variables used in the software program. More specifically,
the power dissipation correlates to the number of logical-1 bits of intermediate com-
putation results. We have shown in our work [Eldib et al. 2014c] that the HW model
is sufficiently accurate for conducting DPA attacks on embedded systems. Sometimes,
however, the Hamming Distance (HD) model needs to be used instead, to relate vari-
ations in power dissipation to differences between the register values and their initial
states [Brier et al. 2004].

The example in Fig. 2 shows that, under the HW model, logically dependent of some
random variable is not the same as statistically-independent of the secret. Here, k is
the secret bit, r1 and r2 are the random bits, and o1, o2, o3, and o4 are the masked
intermediate results. According to the truth table on the right-hand side or functions
on the left-hand side, all four intermediate results are logically dependent of r1,r2

and thus are masked. However, the first three still leak secret information because
they are not perfectly masked. Specifically, o1 leaks information of k because, if it were
logical 1, k would also be logical 1 regardless of the values of the random variables. o2
leaks information of k because, if it were logical 0, k would also be logical 0. o3 leaks
information of k because, if it were logical 1 (or 0), there would be a 75% chance that k
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o1 = x ^ k ^ (r1 ^ r2)

o2 = x ^ k _ (r1 ^ r2)

o3 = x ^ k � (r1 ^ r2)

o4 = x ^ k � (r1 � r2)

x k r1 r2 o1 o2 o3 o4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 0

0 1 1 1 1 1 0 1

Fig. 2. Four masking schemes with different side-channel leakages and the corresponding truth table when
x = 0. Although o1,o2,o3 are masked by random bits r1 and r2, they still leak secret information about k.
In contrast, o4 does not have side-channel leakage.

is also logical 1 (or 0). In contrast, o4 does not leak information of k because, regardless
of whether k is logical 1 (or 0), there is a 50% chance that o4 is logical 1 (or 0).

Perfect Masking. Following [Blömer et al. 2004], we define perfect masking for the
implementation of c  f(x, k) as follows. Given a pair (x, k) of plaintext and secret
key, together with d intermediate results I1(x, k, r), . . . , Id(x, k, r), where r is a random
variable in the domain R, we say f is order-d perfectly masked if the joint distribution
of I1, . . . , Id is independent of k. Otherwise, we say the implementation is vulnerable
to order-d SCA-based attacks. The intermediate result o4 in Fig. 2, for example, is
perfectly masked and thus is immune to first-order attacks.

3. VERIFYING THE SIDE-CHANNEL RESISTANCE
A verification procedure for deciding if f(x, k) is perfectly masked works as follows. Ini-
tially, the input variables are annotated such that all plaintext bits in x are marked
as public, all key bits in k are marked as secret, and all bits in r are marked as ran-
dom. Then, for each intermediate result, denoted I(x, k, r), the procedure checks if I is
perfectly masked by r.

For ease of presentation, we assume d = 1. Thus, verifying if I is perfectly masked
is the same as checking the validity of the following formula:

8x.8k.8k0.
 
X

r2R

I(x, k, r) =
X

r2R

I(x, k0, r)

!

Here, x denotes the plaintext value, k and k

0 denote two values of the key, and r denotes
the random variable. Thus, for each combination (x, k, k0),

—
P

r2R I(x, k, r) denotes the number of values of r making I logical 1; and
—
P

r2R I(x, k0, r) denotes the number of values of r making I logical 1.

Assume that r is uniformly distributed in R, the above summations are probabilities
of I being logical 1 under the plaintext value x and the two key values k and k

0.
Given a cryptographic software program, we first obtain a branch-free representa-

tion by merging all if-else branches. Since there are typically no input-dependent loop
bounds (otherwise, they may be timing side channels), we apply loop unrolling to ob-
tain a loop-free program. Since all variables are bounded integers, we can model them
as finite-length bit-vectors or even construct a purely Boolean program. Fig. 3 shows a
masked version of c (k1^k2), where r1 and r2 are two random bits. The correspond-
ing de-masking function, which is not shown in the figure, would be c� (r1 ^ r2). Due
to the property of XOR, de-masking would produce the desired value (k1 ^ k2).

Thus, we can traverse the abstract syntax tree (AST) of the given program, and for
each intermediate result I, check if I is perfectly masked. For ease of implementation,
instead of checking the validity of the above universally-quantified formula, we use a
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1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1 � r1;
4 : n2 = k2 � r2;
5 : n3 = n1 ^ n2;
6 : n4 = k2 � r2;
7 : n5 = r1 ^ n4;
8 : n6 = k1 � r1;
9 : n7 = r2 ^ n6;
10 : n8 = n5 � n7;
11 : c = n3 � n8;
12 : return c;
13 : }

c

�
�

^ ^

��

�

^

n7

n6

r1r2k2
r1k1

n4

n5
n2

n3

n1

n8

r2

k2 r2 k1 r1

�

Fig. 3. Example Boolean program and its graphic representation (� denotes XOR; ^ denotes AND).

constraint solver to check the satisfiability of its negation, shown as follows:

9x.9k.9k0 .
 
X

r2R

I(x, k, r) 6=
X

r2R

I(x, k0, r)

!

If the formula is satisfiable, the solver will return a plaintext value x and two different
key values (k, k0) such that the probabilities of I(x, k, r) and I(x, k0, r) being logical 1
differ. Therefore, some information of k is leaked. In contrast, if this formula is unsat-
isfiable, it means no such leak is possible.

Model Counting. Thus, the verification of side-channel resistance can be viewed as
comparing the number of satisfying assignments of two closely-related formulas. This
is the case not only for power side channels, but also for other types of side channels
because, fundamentally, the attacks all rely on correlation-based statistic analysis.
Consequently, unlike standard verification techniques, which rely on SAT and SMT
solvers as the decision procedures, the new verification techniques need SAT# and
SMT# solvers to support model-counting. Although model-counting solvers are not yet
as mature as standard SAT and SMT solvers in terms of speed and scalability, they
are catching up rapidly [Chakraborty et al. 2013; Chakraborty et al. 2014; Aydin et al.
2015; Fremont et al. 2017].

SAT?

code checked code checked code checked code checked

code checked code checked code checked code checked

0    0 0    1 1    0 1    1

0    0 0    1 1    0 1    1

Fig. 4. Checking the statistical dependence of secret data (k1, k2).

Without using special-
ized solvers, we can still
solve the verification prob-
lem [Eldib et al. 2014b], al-
beit in a less efficient fash-
ion. Fig. 4 is a pictorial il-
lustration of our encoding
for I(k1, k2, r1, r2), where
k1, k2 are key bits and r1, r2

are random bits. Each box
in the figure denotes a copy
of the input-output relation
of I but with random bits
customized to values 00,
01, 10, and 11, respectively.
Furthermore, the first four
boxes correspond to one set
of key values, denoted k1 and k2, and the remaining four boxes correspond to another
set of key values, denoted k

0
1 and k

0
2. The summations add up the number of logical 1’s,

ACM SIGLOG News 80 April 2017, Vol. 4, No. 2



while the comparison on the right-hand side checks if the probabilities of I(k1, k2, . . .)
and I(k01, k

0
2, . . .) being logical 1 can differ.

Compositional Verification. Whether we use specialized solvers or standard solvers
does not change the fact that, in the worst case, the number of satisfying assignments
is exponential in the number of random bits in r. This may cause scalability problems.
Fortunately, certain properties of masked programs allow us to apply compositional
analysis. That is, instead of verifying the whole program, we partition the AST into
small code regions, and apply the model-counting based analysis only to each individ-
ual code region, one at a time.

This is possible because a common strategy used by cryptographic system engineers
is to create a chain of small modules, where the inputs of each module are masked
before executing its logic and are de-masked afterward. To avoid having unmasked
intermediate values, the inputs to the successor module are masked with fresh random
variables before they are de-masked from the random variables used by the previous
module. Due to the associativity of XOR (�), reordering these masking and de-masking
operations would not change the result. We have shown [Eldib et al. 2014b] that such
property may be exploited for performance optimization in real applications.

Quantifying the Leakage. Our verification procedure so far only checks if a given
program is perfectly masked. However, it cannot quantify the amount of leakage in
programs that are not perfectly masked. To differentiate the strengths of masking
schemes, e.g., o1,o2,o3 in Fig. 2, we have extended the definition of perfect masking
to quantify the amount of residual leakage [Eldib et al. 2014c]. That is, we define the
quantitative masking strength (QMS) as the minimal value of (1��qms) such that,

|E(Ii | k =  ^ x = �)� E(Ii | k = 

0 ^ x = �)|  �qms

holds for all intermediate results Ii(x, k, r), all plaintext values �, and all key values 

and 

0, where  6= 

0. Here, E(Ii | k = ^x = �) can be viewed as the number of values
of r under which Ii(,�, r) evaluates to logical 1.

Consider the example in Fig. 2 again. We have
�qms(o1) = 1/4� 0/4 = 0.25 �qms(o1) = 4/4� 3/4 = 0.25
�qms(o2) = 4/4� 1/4 = 0.75 �qms(o2) = 3/4� 0/4 = 0.75
�qms(o3) = 3/4� 1/4 = 0.50 �qms(o3) = 3/4� 1/4 = 0.50
�qms(o4) = 2/4� 2/4 = 0.00 �qms(o4) = 2/4� 2/4 = 0.00

Intuitively, the numbers are consistent with the amount of power leakage. For exam-
ple, the perfectly-masked o4 has �qms = 0.0, which corresponds to QMS = 1.0. For
each of the remaining three, the larger �qms, the more information it leaks.

To decide whether a given software program meets the QMS requirement, we check
if there exists any intermediate result I(x, k, r) that satisfies the following formula:

9x, k, k0 .
 
X

r2R

I(x, k, r)�
X

r2R

I(x, k0, r)

!
> �qms .

If this formula is satisfiable, there exist some values for x and (k, k0) such that the
difference between distributions of I(x, k, r) and I(x, k0, r) is larger than the expected
�qms. On the other hand, if the above formula is unsatisfiable for all intermediate
results of the program, the implementation meets the QMS requirement.

4. SYNTHESIZING SIDE-CHANNEL RESISTANT SOFTWARE
Given some not-yet-masked software code as input, we use inductive program syn-
thesis to systematically search for an alternative, functionally-equivalent, but side-
channel resistant implementation. Although recent years have seen a renewed interest
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Fig. 7. The synthesized candidate program with
instantiated Boolean masking.

in applying inductive synthesis to a wide variety of applications [Solar-Lezama et al.
2005; Jha et al. 2010; Gulwani 2011; Harris and Gulwani 2011; Harris et al. 2013; Alur
et al. 2013; Eldib and Wang 2014a; Eldib et al. 2016], prior to our work, it has never
been used to mitigate side-channel leaks.

Our synthesis procedure relies on a set of architectural parameters to estimate the
leakage. For each side channel, we leverage a different type of code transformation, or
countermeasure, to eliminate the leakage. Specifically, for instruction timing, the coun-
termeasure would be CFG-balancing, which is to remove all branching conditions that
are dependent on the sensitive data. For cache-memory timing, the countermeasure
would be to remove the dependency between table lookups and the sensitive table con-
tent. For power side channel, the countermeasure would be masking, which removes
the dependency between variations in power dissipation and the sensitive data.

Extract 
AST

Input Attributes
(Keys, Masks)

Application 
Software in C

Generate
Candidate

Verify Perfect
Masking

Blocked
Programs

Synthesized
SCA-Resistant

Program

Not Perfectly 
Masked

Architectural 
Parameters

Fig. 5. Counterexample-guided inductive synthesis procedure.

The overall flow of our
synthesis procedure is
shown in Fig. 5. Given
the application software
together with a set of
sensitive variables and
architectural parameters,
it first extracts an abstract
syntax tree (AST) repre-
sentation of the program.
Then, it generates a can-
didate program that is
functionally equivalent to the original program—the two programs produce the same
output for the same input. Next, it verifies that the candidate program is free of
side-channel leaks. If the verification succeeds, we are done. Otherwise, we block this
candidate program and try again.

To generate the candidate program, we create a skeleton of the program’s AST, which
captures any syntactically correct program up to that size. For example, the skeleton
AST of size 5 shown in Fig. 6 can represent any candidate program with up to five AST
nodes: Op represents any of the predefined binary operators, V |C means the node rep-
resents either a variable or a constant, and the root node represents the computation
output, which must be functionally equivalent to the original program.

We use SMT solvers to search among the candidate programs. That is, to determine
the node types, variable names, and constant values of the skeleton AST, we construct
a formula � such that � is satisfiable if and only if the candidate program is func-
tionally equivalent to the original program. If � is unsatisfiable, it means no solution
exists; in this case, we increase the skeleton size and try again.
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If � is satisfiable, we have found a candidate program, e.g., as in Fig. 7, which is
an instantiation of the skeleton AST. The next step is to verify that it is free of side-
channel leaks. Toward this end, we create another formula  such that  is satisfiable
if and only if the candidate program has side-channel leaks. If  is unsatisfiable, the
candidate program is proved to be a valid solution and we are done. Otherwise, we
block this candidate program and try again.

Fig. 8 shows a masked implementation of the �-function of a reference implemen-
tation of MAC-Keccak, which is NIST’s new SHA-3 crypto-hashing algorithm [NIST
2013]. The original code is on the left-hand side and the new code is on the right-hand
side. We guarantee that all intermediate results in the new program are perfectly
masked. That is, by assuming r1, r2 and r3 are uniformly distributed random vari-
ables, our method guarantees that the probability of each intermediate result being
logical 1 (or 0) is independent of i1, i2 and i3. As for the compactness of the im-
plementation, we note that a countermeasure handcrafted by cryptographic experts
has 14 operations [Bertoni et al. 2013], whereas our synthesized version only has 12
operations—it is more compact than the one handcrafted by experts.

1 : Chi(bool i1, bool i2, bool i3) {
2 : bool n1, n2, n3;
3 : n3 = ¬i2;
4 : n2 = n3 ^ i3;
5 : n1 = n2 � i1;
6 : return n1;
7 : }

i1 i2 i3 n3 n2 n1
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 0 0 1
1 1 1 0 0 1

1 : mChi(bool i1, bool i2, bool i3) {
2 : bool r1, r2, r3; //random bits added

3 : bool b1, b2, b3, n1, n2, n3, n4, n5, n6, n7, n8, n9;
4 : b1 = i1 � r1;
5 : b2 = i2 � r2;
6 : b3 = i3 � r3;
7 : n9 = b3 ^ r2;
8 : n8 = r3 ^ r2;
9 : n7 = r3 _ b2;
10 : n6 = r1 � n9;
11 : n5 = n7 � n8;
12 : n4 = b2 _ b3;
13 : n3 = n5 � n6;
14 : n2 = n4 � b1;
15 : n1 = n2 � n3;
16 : return n1;
17 : }

Fig. 8. The � function in MAC-Keccak, its truth-table, and the synthesized m� function (¬ denotes NOT, ^
denotes AND, _ denotes OR, and � denotes XOR).

Compositional Synthesis. Again, the key is to exploit the unique characteristics of
masked programs. Thus, we have developed a compositional synthesis procedure [El-
dib and Wang 2014b], which applies computationally intensive analysis (e.g., model-
counting) only to small code regions, one at a time, as opposed to the entire program.
Compared to the application of standard synthesis techniques to the entire program,
our compositional synthesis procedure is significantly more scalable.

5. VALIDATING SIDE-CHANNEL RESISTANCE ON REAL DEVICES
To confirm that our modeling and analysis of side-channel leaks at the source code
level accurately reflect what is observed in the physical world, we conducted a set of
SCA-based attacks on implementations of MAC-Keccak, AES, and a few other cryp-
tographic algorithms [Eldib et al. 2015]. In these experiments, we ran all software
code on a 32-bit Microblaze processor [Xilinx 2014] built on a Xilinx Spartan-3e FPGA
(Fig. 9). To measure the power dissipation of the processor core, we used a Tektronix
DPO 3034 oscilloscope and a CT-2 current probe to sample the power dissipation. The
side-channel attack shown in Fig. 9 was conducted using the classic differential power
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analysis, i.e., difference of means [Kocher et al. 1999]. To limit the effect of measure-
ment noise, we collected each trace after running the same software code 128 times and
using the oscilloscope to calculate the average. Thus, a trace refers to a set of samples
taken during the execution of the software code.

enc(x,k)

Power

Time

RS−232

USB

Embedded Computing HW

PC

Key
(k)

Cryptographic SW

Current 
sensor

Plaintext
(x)

(c)
Ciphertext Oscilloscope

Fig. 9. The power side-channel attack system setup.

We used differential power
analysis (DPA) to determine
if a key guess was correct. Re-
call that DPA relies on the
observation that power dis-
sipation variations correlate
to the values of the sensi-
tive bits being manipulated.
Using the same input vec-
tor stream of plaintext as in
the measured traces, we com-
puted the value of the sen-
sitive variable assuming that
the secret key was one of the
key guesses. For an n-bit key,
there would be 2n key guesses. For each key guess, we divided the set of measure-
ment traces into two bins, one for all the sensitive values of logic 0, and one for all the
sensitive values of logic 1. Then, we computed the difference of means between those
two bins for each key guess, and selected the key guess that result in the maximum
difference.

Fig. 10 shows our results on the SHA3 benchmark. The x-axis denotes the QMS
value as defined in Section 3, while the y-axis (in logarithmic scale) denotes the num-
ber of traces needed to determine the secret key. In addition to the measured data,
which are the stars in the figure, we plotted an empirical approximation rule (dotted
curve) generated by hit-and-trial to estimate the measured data. We can see that when
the QMS approaches 1.0, the number of traces needed to determine the secret key ap-
proaches infinity. However, when the QMS deviates from 1.0 slightly, the number of
traces needed to determine the secret key drops quickly. Overall, the side-channel re-
sistance as measured by the number of traces needed to determine the secret key is
dependent on QMS. Fig. 11 shows our results on the AES benchmark.

In both cases, the approximate empirical formula computed to estimate the number
of required DPA traces has the following relation with the QMS value:

Ntrace =
1

(1� QMS)c
,

where c ⇡ 2.0. Note that we obtained this equation without prior knowledge of what the
relation should look like. Later, we discovered that it matches the theoretical analysis
result in the literature [Mangard 2004], which says that c should be precisely 2.0 as
opposed to ⇡ 2.0, since (1 � QMS) represents the standard deviation of power analysis
measurements.

6. FUTURE DIRECTIONS
The next step is to generalize the verification and program synthesis techniques to
handle other types of side channels and software systems. We envision a comprehen-
sive framework (Fig. 12) whose input is the source code of some security-critical soft-
ware, together with a set of sensitive variables (keys, passwords, etc.) tagged in the
source code. To support modeling of various types of side-channel leakage, it also ac-
cepts a set of architecture parameters and leakage models. The output is a transformed
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Fig. 10. DPA attacks on MAC-Keccak: number
of traces needed versus the QMS.
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Fig. 11. DPA attacks on AES: the number of
traces needed versus the QMS value.
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Fig. 12. Framework for synthesizing, verifying, and validating side-channel countermeasures. The input
includes the source code of an application, a list of sensitive variables, and the parametric architecture defi-
nition. The compiler-like tool can (a) insert countermeasures through inductive synthesis and (b) statically
detect remaining side-channel leakage in either synthesized or manually programmed countermeasures.

application for which the dependency between side-channel leakage and sensitive vari-
ables is removed.

When a programmer develops an application, for example, he or she will indicate one
or more types of side-channel leakage, including power dissipation, instruction time,
and cache-memory timing behavior. The framework will examine the software code to
check for the presence of side-channel leakage. In the presence of side-channel leak-
age, the framework will leverage inductive synthesis to transform the software code
into an implementation that eliminates the side-channel leakage. The framework also
assesses the quality of the countermeasure. In addition, by measuring and analyzing
the actual leakage of driver applications using a hardware prototype, we will refine the
architecture parameters and leakage models, thus improving verification and counter-
measure synthesis.

Advantages over Alternative Approaches. There are significant efforts on eliminat-
ing physical emissions of sensitive equipments and electronic systems, e.g. in the leg-
endary TEMPEST project [TEMPEST 1972]. There are also techniques for reducing
physical emissions of hardware (microcontrollers, FPGAs, ASICS, and CPUs) – al-
though these techniques are theoretically feasible, they are not economical. In con-
trast, our approach does not aim to eliminate physical emissions of the computing de-
vices; instead, it transforms the software running on these devices to make the compu-
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tation leak-resistant. Therefore, our approach is fundamentally more economical and
thus more widely applicable.

Another alternative is the use of side-channel resistant software libraries developed
by experts. While libraries could help for selected cases of reusable functionality on
some widely deployed platforms, it is not scalable in general, for several reasons. First,
since side-channel leakage is platform-specific, side-channel resistant libraries must
also be platform-specific and thus non-portable. Second, side-channel resistant tech-
niques incur performance penalty, which means an expert has to decide which sources
of side-channel leakage to address and what level of residual leakage should be toler-
ated. Therefore, a universal countermeasure library is not meaningful; in practice, the
application context is crucial to decide on what makes sense and what not.

7. RELATED WORK
Formal Verification. We started with the notion of perfect masking introduced

by [Blömer et al. 2004] and developed SC-Sniffer [Eldib et al. 2014a; 2014b], the first
automated tool for formally verifying that a software program is perfectly masked. In
comparison, the Sleuth tool developed by [Bayrak et al. 2013] can only check if sensi-
tive data are masked by some random variables (a logical property), but cannot check
if the masking is perfect (a statistical property). We also extended the notion of perfect
masking to quantify the amount of residual leakage in software that are not perfectly
masked [Eldib et al. 2014c]. The strength of masking may be computed statically on the
source code of the software program, and its accuracy as an indicator for side-channel
resistance has been validated by DPA attacks on real devices [Eldib et al. 2015].

Countermeasure Synthesis. There is a large body of work on masking countermea-
sures for cryptographic algorithms [Messerges 2000; Goubin 2001; Oswald et al. 2005;
Herbst et al. 2006; Canright and Batina 2008; Moradi et al. 2011; Barthe et al.
2016], but they require manual design and implementation. By leveraging our veri-
fication procedure for proving side-channel resistance, we developed SC-Masker [El-
dib and Wang 2014b], a tool for automatically synthesizing perfectly-masked software
code. Although there exist some other compiler-like tools for mitigating side-channel
leaks [Bayrak et al. 2011; Moss et al. 2012; Agosta et al. 2012], they rely on ad hoc
techniques, e.g., matching some code patterns and applying predefined transforma-
tions, as opposed to inductive program synthesis techniques. The main advantage of
using inductive synthesis is that the tool becomes application-agnostic and it no longer
relies on existing patterns or mitigation strategies. Therefore, it can handle unknown
and unexpected vulnerabilities.

Other Side Channels. Besides power side channels, there are other types of side
channels through which sensitive information may be leaked. They include, for exam-
ple, instruction timing side channels [Kocher 1996; Köpf and Dürmuth 2009], cache
timing side channels [Grabher et al. 2007], string-related side channels [Bang et al.
2016], and fault-related side channels [Biham and Shamir 1997]. In addition to CPUs,
side channels have been identified in GPUs [Jiang et al. 2016; Luo et al. 2015]. Tech-
niques for mitigating some of these side-channel leaks are also proposed. For example,
Köpf et al. developed techniques for quantitative information flow analysis [Köpf et al.
2012; Backes et al. 2009]. Doychev et al. [Doychev et al. 2013] developed static analysis
techniques for detecting leaks through cache side channels. Barthe et al. [Barthe et al.
2014] developed techniques for mitigating concurrent cache attacks.

8. CONCLUSIONS
We have presented an automated approach to comprehensive side-channel resistance
for embedded computing applications. It relies on formal verification techniques to
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detect side-channel leaks or prove that leaks do not exist, and program synthesis tech-
niques to generate secure implementations. It also leverages hardware prototyping to
validate the effectiveness of these verification and synthesis techniques. Although we
have used power side-channel leaks in cryptographic software as examples, the under-
lying techniques may be applied to various side channels in a wide range of embedded
processing systems, e.g., in phones, cars, and home appliances, as well as industrial,
medical, and transportation systems.
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REP

CONFERENCE REPORTS
JORGE A PÉREZ, University of Groningen, The Netherlands
j.a.perez@rug.nl

This installment of the conference report column includes a report by Bernardo Ton-
inho (Imperial College London) on POPL 2017, which took place in Paris, France on
January 15-21, 2017.1

POPL is the premier forum on all aspects of programming languages research. In
his report, Bernardo describes the conference from the dual perspective of paper au-
thor and participant, with a focus on invited and contributed talks on type theory and
concurrency. I am most grateful to Bernardo for his detailed report.

As usual, I look forward to receiving your personal impressions and/or reports on
conferences and meetings broadly related to SIGLOG. I will also be pleased to hear
your ideas and suggestions for future installments of the column.

1See http://conf.researchr.org/home/POPL-2017.
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Report on POPL 2017

Bernardo Toninho, Imperial College London, United Kingdom

For researchers working on programming languages (or related fields), mid-January
always brings the excitement of a new edition of the ACM Symposium on Principles
of Programming Languages (POPL). POPL is a chance to learn about the best work
that is happening in the field, usually with more emphasis on the theoretical aspects
of programming language research, but not exclusively so – which is one of the many
things that makes POPL great.

For this particular year, I had the opportunity to experience POPL in person for
the first time both as an author and a participant. This year, POPL was located in
a particularly cold Paris, at the Jussieu campus of Université Pierre et Marie Curie
(Paris 6). It was one of the largest editions ever, with 722 registrants for the entire
week (of which 571 registered specifically for POPL).

My coauthors and I arrived at the conference venue on the first day of POPL, not
attending any of the workshops earlier in the week. The conference was split between
two rooms. A larger auditorium where the invited talks, and one of the two parallel
sessions, took place; and a smaller (but still quite large) amphitheatre located in a
different building, hosting the second parallel session. Logistically this made it a bit
harder than usual to swap between talks mid-session, but overall it worked out nicely
(especially given the somewhat unprecedented size of the event).

The day opened with the first of the three invited talks for the week, which was
delivered by Stephanie Weirich (University of Pennsylvania) on “The Influence of De-
pendent Types” in the Haskell GHC compiler. I could not quite secure a seat in the
main room, but luckily the invited talks were broadcast to the second room, so I did
not lose much. The goal of the talk was to zoom in on the several (type system) exten-
sions to GHC that have been inspired by dependent types, and how these extensions
enable (with varying degrees of ease) a form of dependently-typed programming within
a general purpose language like Haskell.

The talk itself consisted of a live coding session of a regular expression parser, ex-
ploiting the several advanced type features of GHC. While it is a bit of a risk to ex-
pect that most of the audience is fluent in the more specialised “dependently-typed”
Haskell forms, I think the talk worked very well in both showcasing what one can do
with Haskell’s rich type system, but also what one cannot do, or at least how the com-
promises of integrating such advanced type level features in an existing (non-total)
language play out in practice. All in all, it was a very interesting exercise in the true
spirit of POPL – how programming language theory can and does impact the practice
in meaningful and relevant ways, even if it can take a while to get there.

Keeping with the roots of the conference, the first session of the day (in the main
auditorium) was devoted to type systems in all their glory, ranging from fundamental
problems like type inference with subtyping in ML and parametricity results for mod-
ule systems to elegantly formal solutions to more practical problems such as repre-
senting and reasoning about incomplete pieces of code in editors using types. However,
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the main reason why I mention this particular session is that it held what I thought
was the best talk of the conference (at least of those I attended), which was by Radu
Grigore (University of Kent) on the Turing completeness of Java generics. The talk
was a clever mix of the history of the formalisation of generics and the intuitions of
how to write a Turing machine within Java’s type system, including a grand finale

(with roaring applause from the audience) demo of a Turing machine that checks for
palindromes implemented in Java’s type system.

The rest of the day consisted of the usual healthy mix of theory and practice that
POPL is known for, with sessions on abstract interpretation, shared-memory con-
currency and separation logic, compiler optimisation, probabilistic programming and
logic. The day ended with the social dinner, held at the somewhat surreal venue that
was the Musée des Arts Forains (a museum of old amusement park rides and related
activities). It was likely the most fun conference dinner I have attended, since the par-
ticipants were allowed (and encouraged) to engage in the various rides and activities
within the venue – featuring a faster than expected bicycle-powered carousel.

The second day of festivities opened with a very different kind of invited talk (tech-
nically, it started with the Most Influential Paper and Reynolds Doctoral Dissertation
awards), consisting of an interview with Patrick Cousot (New York University / ENS)
by Roberto Giacobazzi (University of Verona) on the 40-year history of Abstract Inter-
pretation. The session was an informal journey through the origins of abstract inter-
pretation, dating back to the seminal 1977 POPL paper by Patrick and the late Radhia
Cousot, covering the many challenges that were faced early on and the many successes
that followed.

The rest of the morning had a very interesting type systems session (yet again),
showing the more theoretical side of POPL with very good talks on equivalence in
�-calculi, a generalisation of the notion of type isomorphism to account for effects in
a pleasing way, and on a polymorphic self-interpreter for an F!-style language (all
of this happened in parallel with a session on program analysis that I could not at-
tend). The afternoon focused on (more) shared-memory concurrency – as a side-note,
its quite the sight to see so many groups working on formal reasoning and verification
of concurrency, including the body of work on weak memory models (C++11) – effectful
functional programming and semantics and concluded with the POPL business meet-
ing. It is always amazing to see the herculean amount of work that PC chairs (and the
PC itself) put into the organisation of a conference like POPL, and this year was no
exception in the amount of careful work that ultimately resulted in yet another suc-
cessful edition of the conference. The audience was also introduced to the city of Los
Angeles where the 2018 edition of POPL will happen, and on some very much needed
updates on the Open Access policies of ACM and SIGPLAN (spoiler alert: OA is a good
thing). SIGPLAN is also looking at ways to improve the carbon footprint of conferences
(spoiler alert #2: also a good thing).

The final day of the conference started with a very nice invited talk by Aaron
Turon (Mozilla) on how it is indeed possible to realise the kind of programming lan-
guage research ideas seen at conferences like POPL into a production-level language –
Rust. The talk was structured as a form of walk-through of the kinds of problems Rust
is trying to solve (safe systems programming) and how the notions of substructural
typing and typeclasses made their way into the core of Rust’s design. The morning
closed off with the final type systems session and a session on verification and synthe-
sis (apologies to the authors of the papers in the latter session, but I opted to attend
the former). The types session featured a nice alternation of theory and practice, flow-
ing from intersection type theories to techniques to prove type soundness of languages
like (the core of) Scala; and from a computational reading of higher-dimensional type
theory (in the HoTT-sense) to a metalanguage for (typed) embedded DSLs exploiting
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the macro system of Racket. The second half of the day kicked off with a session on
gradual typing and one on concurrency (notably, the only non-separation logic/weak
memory models concurrency session), and closed with parallel sessions on quantum
computing and security. Shortly after I was on a train back to London, and thus my
first (but certainly not last) POPL ended.

I will conclude this report with some general semi-random observations: POPL,
while being focused on programming language research, features extremely varied
work (e.g. sessions on quantum computing, type theory and compiler optimisation)
which really showcases how diverse the field has become; student volunteering is a
great way to see the “wonders of POPL” and every student everywhere should apply
(and also to the student poster competition); and finally, “(good) theory matters!” is – at
least to me – the motto of POPL (well, that and “well-typed programs can’t go wrong”).

From the invited talks to the research talks, the main take-away message is that
practical problems can indeed have elegant theoretical solutions, and even the seem-
ingly esoteric or “too abstract” works do indeed leave their mark, often in unexpected
ways. So let’s keep doing what we do in the way we know how to do it (and then submit
it to next year’s POPL)!
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TIME 2017 - Call for Papers
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GandALF 2017 - Preliminary Call for Papers
RERS Challenge 2017 - Call for Papers
RSSRail 2017 - Call for Papers
LSFA 2017 - Second Call for Papers
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* JOB ANNOUNCEMENTS

THIRTY-SECOND ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
(LICS 2017)

18 - 23 June 2017, Reykjavik
Early registration deadline: April 7, 2017
http://lics.rwth-aachen.de/lics17/
http://www.icetcs.ru.is/lics2017-registration.html

* We strongly encourage conference and workshop participants to
register, and to make their travel and accommodation arrangements,
as soon as possible. Iceland is a very hot holiday destination these
days and it becomes fully booked soon, especially during the summer
months.

* ACCEPTED PAPERS
http://lics.rwth-aachen.de/lics17/accepted.html

* MENTORING WORKSHOP
Sponsorship application deadline:
31 March 2017

* OTHER WORKSHOPS
INFINITY: 19th International Workshop on Verification of

Infinite-State Systems.
LearnAut: Learning and Automata.
LCC: Logic and Computational Complexity.
LMW: Logic Mentoring Workshop.
LOLA: Syntax and Semantics of Low-Level Languages.
METAFINITE model theory and definability and complexity of numeric

graph parameters.
WiL: Women in Logic.
http://lics.rwth-aachen.de/lics17/workshops.html

ACM SIGLOG ANNOUNCEMENT
http://siglog.acm.org

* The ACM has recently chartered a Special Interest Group on Logic and
Computation (ACM SIGLOG).

* We are pleased to announce the 2016 ACM SIGLOG election results for
the term of 1 July 2016 - 30 June 2019. The SIGLOG Chair is Prakash
Panangaden and the other officers are Luke Ong (vice-Chair), Amy
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Felty (Treasurer) and Alexandra Silva (Secretary).
* The ACM-IEEE Symposium on Logic in Computer Science is the flagship

conference of SIGLOG. SIGLOG will also actively seek association
agreements with other conferences in the field. A SIGLOG newsletter
(SIGLOG News) is also published quarterly in an electronic format
with community news, technical columns, members’ feedback,
conference reports, book reviews and other items of interest to the
community.

* One can join SIGLOG by visiting
https://campus.acm.org/public/qj/gensigqj/siglist/gensigqj_siglist.cfm
It is possible to join SIGLOG without joining ACM (the SIGLOG
membership fee is $25 and $15 for students).

DATES
* CALCO 2017

Last Call for Papers
June 13 - 16, 2017
Ljubljana, Slovenia
http://coalg.org/calco17/
Paper submission: April 7, 2017

* CALCO Tools 2017
Call for Contributions
A satellite event of CALCO 2017
June 13, 2017, Ljubljana, Slovenia
http://coalg.org/calco17/tools.html
Paper submission: April 7, 2017

* LearnAut 2017
Call for Papers
LICS 2017 Workshop
June 19, Reykjavik (Iceland)
Website: https://learnaut.wordpress.com/
Submission deadline: April, 1st, 2017

* CCA 2017
Second Call for Papers
http://cca-net.de/cca2017/
July 24-27, 2017, Daejeon, South Korea
Submission deadline: April 3, 2017

* DARe at LPNMR 2017
Call for Papers
Espoo, Finland, 3 July 2017
Deadline: 10 April 2017
https://sites.google.com/view/dare-17

* METAFINITE 2017
First Call for Presentations
Affiliated with LICS 2017
June 19 2017, Reykjavik, Iceland
http://cs.technion.ac.il/~janos/metafinte2017
Submission: Friday 7 April 2017

* MARKTOBERDORF SUMMER SCHOOL
Call for Participation
Logical Methods for Safety and Security of Software Systems
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August 2-11 2017
https://asimod.in.tum.de/2017/
Apply online: https://asimod.in.tum.de/2017/participation.shtml
Deadline: April 9

* ITP 2017
Call for Papers
Brasilia, Brazil - 25-29 September 2017
Co-located with TABLEAUX 2017 and FroCoS 2017
http://itp2017.cic.unb.br
Paper submission deadline: April 10, 2017

* FSCD 2017
Second Call for Papers
Second Call for Papers
4 - 7 September 2017, Oxford, UK
http://www.cs.ox.ac.uk/conferences/fscd2017/
Submission Deadline: 14 April 2017

* LACompLing 2017
Call for papers
Stockholm, August 18-19, 2017
http://staff.math.su.se/rloukanova/LACompLing17.html
Submission deadline for regular papers: April 14, 2017

* LORI-VI 2017
Third Call for Papers (extended deadline)
September 11-14, 2017, Hokkaido University, Sapporo, Japan
http://golori.org/lori2017/
Submission Deadline extended to Friday April 14

* CCC 2017
Call for papers
Loria, 26-30 June 2017, Nancy, France
https://members.loria.fr/MHoyrup/CCC/home.html
Deadline: 17 April 2017

* METAFINITE 2017
Second Call for Presentations (Extended deadline)
Affiliated with LICS 2017
June 19 2017, Reykjavik, Iceland
http://cs.technion.ac.il/~janos/metafinte2017
Submission: Friday 18 April 2017

* ESORICS 2017
Call For Papers
Oslo, Norway, September 11-15, 2017
https://www.ntnu.edu/web/esorics2017/
Paper submission deadline: April 19, 2017

* MFCS 2017
Call for Papers
Aalborg, Denmark, August 21-25, 2017
http://mfcs2017.cs.aau.dk/
Paper submission deadline: April 24th, 2017 (AoE)

* VECoS 2017
Call for Papers
August 24-25, 2017 Montreal, Canada
https://vecos.ensta-paristech.fr/2017/
Papers deadline: April 24, 2017 (AoE)
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* TABLEAUX 2017
Call for Papers
Brasilia, Brazil - 25-29 September 2017
Co-located with FroCoS 2017 and ITP 2017.
http://tableaux2017.cic.unb.br
Submission deadline: April 25, 2017

* FroCoS 2017
Call for Papers
Brasilia, Brazil - 25-29 September 2017
Co-located with TABLEAUX 2017 and ITP 2017
http://frocos2017.cic.unb.br
Submission Deadlines: 24 April 2017 (abstracts)
and 28th April 2017 (full papers)

* RV 2017
Call for Papers and Tutorials
September 13-16, Seattle, WA, USA
http://rv2017.cs.manchester.ac.uk
Paper and tutorial deadline: May 1, 2017 (Anywhere on Earth)

* CiE 2017
Call for Informal Presentations
Turku, Finland, June 12-16, 2017
http://math.utu.fi/cie2017
Submission deadline: May 1, 2017

* CALCO EI 2017
Call for Contributions
A satellite event of CALCO 2017
June 13-16, 2017
http://coalg.org/calco17/ei.html
Submission of short contributions: May 1, 2017

* LOGIC COLLOQUIUM 2017
First Announcement and Call for Submissions
August 14-20, 2017, Stockholm, Sweden
https://www.lc17.conf.kth.se
Abstract submission for contributed talks: May 5, 2017

* AIRIM’17
Call for Papers
Prague, Czech Republic, 3 - 6 September, 2017
https://www.fedcsis.org/2017/airim
Paper submission (strict deadline): May 10 2017 23:59:59 pm HST

* TIME 2017
Call for Papers
Mons (Belgium), 16-18 October 2017
http://informatique.umons.ac.be/time2017/
Full papers due: May 12

* SyGuS-COMP 2017
Call for Solvers and Benchmarks Submission
July 22, 2017 Heidelberg, Germany (with CAV and SYNT)
http://www.sygus.org/SyGuS-COMP2017.html
Benchmark submission deadline: 15 May 2017

* NLS 2017
Second announcement and call for papers
Stockholm, August 7 - 11, 2017

ACM SIGLOG News 98 April 2017, Vol. 4, No. 2



Department of Mathematics, KrÃd’ftriket Campus, Stockholm University.
https://www.sls17.conf.kth.se
Early registration ends: May 15, 2017

* SR 2017
Preliminary Call for Papers
Liverpool, UK, July 26-27, 2017
http://sr2017.csc.liv.ac.uk/
Submission deadline: May 15, 2017

* HaPoC4
Second Call for Papers
4-7 October 2017, Masaryk University Brno
https://hapoc2017.sciencesconf.org/
Deadline: 15 May 2017

* PPDP 2017
Call for Papers
Namur, Belgium, October 9-11, 2017
(co-located with LOPSTR’17)
http://complogic.cs.mcgill.ca/ppdp2017
Deadline: 12 May (abstracts) / 19 May (papers)

* GandALF 2017
Preliminary Call for Papers
Rome, Italy, 20-22 September 2017
http://gandalf2017.istc.cnr.it
Paper submission deadline: May 26, 2017

* RERS Challenge 2017
Call for Papers
Santa Barbara, USA, July 2017.
Deadline for all submission: 01.07.2017

* RSSRail 2017
Call for Papers
November 14-16, 2017, Pistoia, Italy
https://conferences.ncl.ac.uk/rssrail/
paper submission deadline: June 8, 2017

* LSFA 2017
Second Call for Papers
23-24 September 2017, Brasilia, Brazil
Satellite event of TABLEAUX, FroCoS, and ITP 2017
http://lsfa2017.cic.unb.br/
Submission deadline: 21 June 2017

* EPS 2017
Call for Posters and Encyclopedia Entries
24, 25th of September 2017, Brasilia, Brazil
http://proofsystem.github.io/Encyclopedia/
Submission: August 1

7TH INTERNATIONAL CONFERENCE ON ALGEBRA AND COALGEBRA IN COMPUTER
SCIENCE (CALCO 2017)

Last Call for Papers
June 13 - 16, 2017
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Ljubljana, Slovenia
http://coalg.org/calco17/

* IMPORTANT DATES
Abstract submission: April 3, 2017
Paper submission: April 7, 2017
Author notification: May 15, 2017
Final version due: May 31, 2017

* SCOPE
CALCO aims to bring together researchers and practitioners with
interests in foundational aspects, and both traditional and emerging
uses of algebra and coalgebra in computer science.
It is a high-level, bi-annual conference formed by joining the
forces and reputations of CMCS (the International Workshop on
Coalgebraic Methods in Computer Science), and WADT (the Workshop on
Algebraic Development Techniques). Previous CALCO editions took
place in Swansea (Wales, 2005), Bergen (Norway, 2007), Udine (Italy,
2009), Winchester (UK, 2011), Warsaw (Poland, 2013) and Nijmegen
(the Netherlands, 2015).

* INVITED SPEAKERS
- Nicoletta Sabadini - University of Insubria, IT
- Alex Simpson - University of Ljubljana, SL
Joint Session with MFPS on Metrics, Privacy and Learning:
- James Worrell - University of Oxford, UK (joint with MFPS)
Further Invited Speakers
- Catuscia Palamidessi - Ecole polytechnique, FR (joint with MFPS)
- Vincent Danos - Ecole normale superieure, FR (joint with MFPS)
- Marco Gaboardi - University at Buffalo, USA (joint with MFPS)

* SPECIAL SESSION ON METRICS, PRIVACY AND LEARNING
(joint event with MFPS)

* TOPICS OF INTEREST
- Abstract models and logics
- Specialised models and calculi
- Algebraic and coalgebraic semantics
- System specification and verification
- Corecursion in Programming Languages
- Algebra and Coalgebra in quantum computing
- String Diagrams and Network Theory

* BEST PAPER AND BEST PRESENTATION AWARDS
This edition of CALCO will feature two awards: a Best Paper Award
whose recipients will be selected by the PC before the conference and
a Best Presentation Award, elected by the participants.

* PC CHAIRS
Filippo Bonchi (ENS Lyon, France, co-chair)
Barbara Koenig (University of Duisburg-Essen, Germany, co-chair)

* PUBLICITY CHAIR
Fabio Zanasi (UCL, UK)

* SATELLITE WORKSHOPS: CALCO EARLY IDEAS AND CALCO TOOLS
The CALCO Early Ideas Workshop is intended to enable presentation of
work in progress and original research proposals. PhD students and
young researchers are particularly encouraged to contribute.
The CALCO Tools Workshop is dedicated to tools based on algebraic
and/or coalgebraic principles.
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CALCO 2017 will run together with the CALCO Early Ideas Workshop,
with dedicated sessions at the end of each conference day. CALCO
Tools will take place on June 13.

CALCO Tools 2017
Call for Contributions
A satellite event of CALCO 2017
June 13, 2017, Ljubljana, Slovenia
http://coalg.org/calco17/tools.html

* IMPORTANT DATES
Abstract submission: April 3, 2017
Paper submission: April 7, 2017
Author notification: May 15, 2017
Final version: May 31, 2017

* SCOPE A special workshop at CALCO 2017 is dedicated to tools based
on algebraic and/or coalgebraic principles or that are emerging from
the intersection of the two approaches, such as graph grammars or
coinductive proof techniques. These include
systems/prototypes/tools developed specifically for design,
checking, execution, and verification of (co)algebraic
specifications, but also tools targeting different application
domains while making core or interesting use of (co)algebraic
techniques. CALCO-Tools will take place on the same dates as the
main CALCO conference, with no overlap between the technical
programmes of the two events.

* INVITED SPEAKER
Nate Foster - Cornell University, USA

* PC CHAIR
Till Mossakowski - Universitat Magdeburg, Germany

* SUBMISSION DETAILS
http://coalg.org/calco17/tools.html

LEARNING AND AUTOMATA - LICS 2017 WORKSHOP (LEARNAUT 2017)
Call for Papers
June 19, Reykjavik (Iceland)
Website: https://learnaut.wordpress.com/

* Grammatical Inference (GI) studies machine learning algorithms for
classical recursive models of computations like automata and
grammars. The expressive power of these models and the complexity
of associated computational problems are a major research topic
within theoretical computer science (TCS). This workshop aims at
offering a favorable place for dialogue and at generating
discussions between researchers from these two communities. We
invite submissions of recent works, possibly preliminary ones,
related to the theme of the workshop. Similarly to how main machine
learning conferences and workshops are organized, all accepted
abstracts will be part of a poster session held during the workshop.
Additionally, the Program Committee will select a subset of the
abstracts for oral presentation. At least one author of each
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accepted abstract is expected to represent it at the workshop. A
list of topics of interest can be found on the website.

* INVITED SPEAKERS, [TBC]:
Kim G. Larsen (Aalborg),
Mehryar Mohri (NYU & Google),
Alexandra Silva (UCL)

* IMPORTANT DATES:
Submission deadline: April, 1st, 2017
Notification of acceptance: mid-April, 2017

FOURTEENTH INTERNATIONAL CONFERENCE ON COMPUTABILITY AND COMPLEXITY
IN ANALYSIS (CCA 2017)

Final Call for Papers
July 24-27, 2017, Daejeon, South Korea
http://cca-net.de/cca2017/
Submission deadline: April 3, 2017

* TOPICS
- Computable analysis
- Complexity on real numbers
- Constructive analysis
- Domain theory and analysis
- Theory of representations
- Computable numbers, subsets and functions
- Randomness and computable measure theory
- Models of computability on real numbers
- Realizability theory and analysis
- Reverse analysis
- Real number algorithms
- Implementation of exact real number arithmetic

* INVITED SPEAKERS
Hee-Kap Ahn (Pohang, Republic of Korea)
Veronica Becher (Buenos Aires, Argentina)
Anders Hansen (Cambridge, UK)
Takayuki Kihara (Berkeley, USA)
Amaury Pouly (Max Planck Institute, Germany)
Linda Brown Westrick (Connecticut, USA)

* FUNDING
Funding opportunities for student members of the Association for
Symbolic Logic (ASL) are available.

* IMPORTANT DATES
Submission deadline: April 3, 2017
Notification of authors: May 1, 2017
Final version: May 29, 2017

* Conference Web Page
http://cca-net.de/cca2017/

* SATELLITE WORKSHOP ON REAL VERIFICATION
A co-located "Workshop on Real Verification" will take place on
Friday, July 28
https://complexity.kaist.edu/CCA2017/workshop.html
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THE FOURTH INTERNATIONAL WORKSHOP ON DEFEASIBLE AND AMPLIATIVE
REASONING (DARe)

Call for Papers
Espoo, Finland, 3 July 2017
https://sites.google.com/view/dare-17
held at the International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2017)

* Latest News
There will be a special issue of the International Journal of
Approximate Reasoning (IJAR) containing selected extended versions
of papers that have been accepted at DARe. The call for this special
issue is planned for late 2017. More information to follow.

* Workshop Description, Aims and Scope
Classical reasoning is not flexible enough when directly applied to
the formalization of certain nuances of human quotidian decision
making. These involve different kinds of reasoning such as reasoning
with uncertainty, exceptions, similarity, vagueness, incomplete or
contradictory information and many others.
DARe welcomes contributions on all aspects of defeasible and
ampliative reasoning such as (but not limited to):
- Abductive and inductive reasoning
- Explanation finding, diagnosis and causal reasoning
- Inconsistency handling and exception-tolerant reasoning
- Decision-making under uncertainty and incomplete information
- Default reasoning, non-monotonic reasoning, non-monotonic logics,

conditional logics
- Specific instances and variations of ampliative and defeasible

reasoning
- Probabilistic and statistical approaches to reasoning
- Vagueness, rough sets, granularity and fuzzy-logics
- Philosophical foundations of defeasibility
- Empirical studies of reasoning
- Relationship with cognition and language
- Contextual reasoning
- Preference-based reasoning
- Analogical reasoning
- Similarity-based reasoning
- Belief dynamics and merging
- Argumentation theory, negotiation and conflict resolution
- Heuristic and approximate reasoning
- Defeasible normative systems
- Reasoning about actions and change
- Reasoning about knowledge and belief, epistemic and doxastic logics
- Ampliative and defeasible temporal and spatial reasoning
- Computational aspects of reasoning with uncertainty
- Implementations and systems
- Applications of uncertainty in reasoning

* IMPORTANT DATES
- Submission deadline: 10 April 2017
- Notification: 1 May 2017
- Camera ready: 22 May 2017
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- Workshop date: 3 July 2017
* WORKSHOP CO-CHAIRS

- Richard Booth, Cardiff University, UK
- Giovanni Casini, University of Luxembourg
- Ivan Varzinczak, CRIL, Univ. Artois & CNRS, France

WORKSHOP ON METAFINITE MODEL THEORY AND DEFINABILITY AND COMPLEXITY OF
NUMERIC GRAPH PARAMETERS (METAFINITE 2017)

First Call for Presentations
Affiliated with LICS 2017
June 19 2017, Reykjavik, Iceland
http://cs.technion.ac.il/~janos/metafinte2017

* AIM:
The workshop will bring together three strands of investigation
dealing with the model theory and complexity of numeric graph
parameters and their generalization to other first order structures.
(A) Gurevich and Graedel in 1998 initiated the study of metafinite
model theory to study descriptive complexity of numeric parameters.
Metafinite model theory found most of its applications in databases
and abstract state machines (ASM), but was not widely studied in
connection to numeric combinatorial parameters.
(B) Courcelle, Makowsky and Rotics initiated a definability theory
for graph polynomials in 2000 and proved metatheorems for graph
polynomials and numeric structural parameters.
(C) Kotek, Makowsky and Ravve questioned wether the Turing model of
computation was the right choice to discuss the complexity of
numeric graph parameters and proposed alternatives using the
Blum-Shub-Smale model of computation.
The aim of the workshop is to bring together researchers of these
three strands in order to further explore and elaborate on the
appropriate framework for the study of numeric structural parameters
and polynomials and to investigate further metatheorems.
For more background see http://cs.technion.ac.il/~janos/metafinte2017

* ORGANIZERS and PC:
A. Goodall (Charles University, Prague)
J.A. Makowsky (Technion, Haifa)
E.V. Ravve (ORT-Braude, Karmiel)

* CONFIRMED SPEAKERS:
E. Graedel (RWTH, Aachen)
K. Meer (BTU, Cottbus)
M. Ziegler (KAIST, Southkorea)
T. Kotek (TU, Vienna)

* IMPORTANT DATES (AoE):
Submission: Friday 7 April 2017
Notification: Monday 24 April 2017
Final version: Monday 15 May 2017
Workshop: Monday June 19 2017

* CONTACT:
For further questions write to Dr. Elena Ravve at
cselena@braude.ac.il
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MARKTOBERDORF SUMMER SCHOOL
Call for Participation
Logical Methods for Safety and Security of Software Systems
August 2-11 2017
https://asimod.in.tum.de/2017/

* Apply online: https://asimod.in.tum.de/2017/participation.shtml
Deadline: April 9

* The "Marktoberdorf Summer School" is an 11-day event for young
computer scientists and mathematicians, typically doctoral and
post-doctoral researchers. It provides mini-courses on
state-of-the-art topics in "Logical Methods for Safety and Security
of Software Systems" and leaves ample room for interaction between
participants and speakers.

* SPEAKERS AND COURSES:
CHRISTEL BAIER:

Probabilistic Model Checking
GILLES BARTHE:

Relational Verification for Differential Privacy and Cryptography
NICOLAJ BJORNER:

Satisfiability Modulo Theories
CEDRIC FOURNET:

Security Verification in F*
ORNA GRUMBERG:

Program Repair
JOOST-PIETER KATOEN:

Foundations of Probabilistic Programming
DANIEL KROENING:

Static Analysers for Black Hats and White Hats
ORNA KUPFERMANN:

Automated Synthesis of Temporal-Logic Specifications
MAGNUS MYREEN:

Verification of an ML Compiler
TOBIAS NIPKOW:

Verified Analysis of Functional Data Structures
LARRY PAULSON:

Proof Support for Hybrid System Analysis
ANDRE PLATZER:

Dynamic Logic for Dynamical Systems

8th INTERNATIONAL CONFERENCE ON INTERACTIVE THEOREM PROVING (ITP 2017)
Call for Papers
Brasilia, Brazil - 25-29 September 2017
Co-located with TABLEAUX 2017 and FroCoS 2017
http://itp2017.cic.unb.br

* The ITP conference series is concerned with all topics related to
interactive theorem proving, ranging from theoretical foundations to
implementation aspects and applications in program verification,
security, and formalization of mathematics. ITP is the evolution of
the TPHOLs conference series to the broad field of interactive
theorem proving. TPHOLs meetings took place every year from 1988

ACM SIGLOG News 105 April 2017, Vol. 4, No. 2



until 2009.
* PROGRAM CHAIRS

Mauricio Ayala-Rincon, University of Brasilia
Cesar Munoz, NASA

* ORGANISATION
University of Brasilia
Federal University of Rio Grande do Norte

* IMPORTANT DATES
Abstract submission deadline: April 3, 2017
Full paper submission deadline: April 10, 2017
Author notification: June 2, 2017
Camera-ready papers: June 30, 2017

SECOND INTERNATIONAL CONFERENCE ON FORMAL STRUCTURES FOR COMPUTATION
AND DEDUCTION (FSCD’17)

Second Call for Papers
4 - 7 September 2017, Oxford, UK
in-cooperation with the ACM SIGLOG and SIGPLAN and co-located with
ICFP 2017
http://www.cs.ox.ac.uk/conferences/fscd2017/

* FSCD (http://fscdconference.org/) covers all aspects of formal
structures for computation and deduction from theoretical
foundations to applications. Building on two communities, RTA
(Rewriting Techniques and Applications) and TLCA (Typed Lambda
Calculi and Applications), FSCD embraces their core topics and
broadens their scope to closely related areas in logics, proof
theory and new emerging models of computation such as quantum
computing or homotopy type theory.

* IMPORTANT DATES.
All deadlines are midnight anywhere-on-earth (AoE)
and are firm; late submissions will not be considered.
Abstract Deadline: 7 April 2017
Submission Deadline: 14 April 2017
Rebuttal: 29--31 May 2017
Notification: 14 June 2017
Camera-Ready: 7 July 2017

* TOPICS. Suggested, but not exclusive, list of topics for submission are:
1. Calculi: Lambda calculus * Concurrent calculi * Logics * Rewriting
systems * Proof theory * Type theory and logical frameworks
2. Methods in Computation and Deduction: Type systems * Induction and
coinduction * Matching, unification, completion, and orderings *
Strategies * Tree automata * Model checking * Proof search and
theorem proving * Constraint solving and decision procedures
3. Semantics: Operational semantics * Abstract machines * Game
Semantics * Domain theory and categorical models * Quantitative
models
4. Algorithmic Analysis and Transformations of Formal Systems: Type
Inference and type checking * Abstract Interpretation * Complexity
analysis and implicit computational complexity * Checking
termination, confluence, derivational complexity and related
properties * Symbolic computation
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5. Tools and Applications: Programming and proof environments *
Verification tools * Libraries for proof assistants and interactive
theorem provers * Case studies in proof assistants and interactive
theorem provers * Certification

* BEST PAPER AWARD BY JUNIOR RESEARCHERS The program committee will
consider declaring this award to a paper in which all authors are
junior researchers: a junior researcher is a person who is either a
student or whose PhD award date is less than three years from the
first day of the meeting.

* PROGRAM COMMITTEE CHAIR
Dale Miller, Inria Saclay & LIX <fscd17@easychair.org>

WORKSHOP ON LOGIC AND ALGORITHMS IN COMPUTATIONAL LINGUISTICS
(LACOMPLING 2017)

Call for papers
Stockholm, August 18-19, 2017
http://staff.math.su.se/rloukanova/LACompLing17.html

* Affiliated with the 26th Annual EACSL Conference on Computer Science
Logic CSL’2017 (Stockholm, 20--26 August 2017)
https://www.csl17.conf.kth.se/

* Co-located with Logic in Stockholm 2017:
https://www.lis17.conf.kth.se/

* DESCRIPTION
Computational linguistics studies natural language in its various
manifestations from a computational point of view, both on the
theoretical level (modeling grammar modules dealing with natural
language form and meaning, and the relation between these two) and
on the practical level (developing applications for language and
speech technology). Right from the start in the 1950ties, there have
been strong links with computer science and logic - one can think of
Chomsky’s contributions to the theory of formal languages and
automata, or Lambek’s logical modeling of natural language
syntax. The workshop assesses the place of computer science logic in
present day computational linguistics. It intends to be a forum for
presenting new results as well as work in progress.

* SCOPE The workshop focuses on logical approaches to the
computational processing of natural language, and on the
applicability of methods and techniques from the study of artificial
languages (programming/logic) in computational linguistics.

* TOPICS. The topics of LACompLing2017 include, but are not limited
to:
- Computational theories of human language
- Computational syntax
- Computational semantics
- Computational syntax-semantics interface
- Interfaces between morphology, lexicon, syntax, semantics, speech,
text, pragmatics
- Computational grammar
- Logic and reasoning systems for linguistics
- Type theories for linguistics
- Models of computation and algorithms for linguistics
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- Language processing
- Parsing algorithms
- Generation of language from semantic representations
- Large-scale grammars of natural languages
- Multilingual processing
- Data science in language processing
- Machine learning of language
- Interdisciplinary methods
- Integration of formal, computational, model theoretic, graphical,
diagrammatic, statistical, and other related methods

- Logic for information extraction or expression in written and spoken language
- Language theories based on biological fundamentals of information
and languages

- Computational neuroscience of language
* IMPORTANT DATES

Submission deadline for regular papers: April 14, 2017
Notification of paper acceptance: May 31, 2017
Deadline for abstracts of short presentations: June 4, 2017
Notifications for short presentations: June 12, 2017
Deadline for final submissions: June 25, 2017
Workshop: August 18-19, 2017

* CONTACT
Roussanka Loukanova (rloukanova@gmail.com)
Valeria de Paiva (valeria.depaiva@gmail.com)

THE SIXTH INTERNATIONAL CONFERENCE ON LOGIC, RATIONALITY
AND INTERACTION (LORI-VI 2017)

Third Call for Papers (extended deadline)
September 11-14, 2017, Hokkaido University, Sapporo, Japan
http://golori.org/lori2017/

* OVERVIEW. The International Conference on Logic, Rationality and
Interaction (LORI) conference series aims at bringing together
researchers working on a wide variety of logic-related topics that
concern the understanding of rationality and interaction. The series
aims at fostering a view of Logic as an interdisciplinary endeavour,
and supports the creation of an East-Asian community of
interdisciplinary researchers.

* NEWS. Submission Deadline extended to Friday April 14
* WEBSITE. For detailed conference information and registration,

please visit http://golori.org/lori2017/ .
* INVITED SPEAKERS

Mike Dunn: Indiana University, U.S.A.
Alan Hajek: Australian National University, Australia
Nina Gierasimczuk: Technical University of Denmark, Denmark
Willemien Kets: Northwestern University, U.S.A
Sara Negri: University of Helsinki, Finland
Hiroakira Ono: JAIST, Japan

* PC CHAIRS
Alexandru Baltag: University of Amsterdam, The Netherlands
Jeremy Seligman: University of Auckland, New Zealand
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CONTINUITY, COMPUTABILITY, CONSTRUCTIVITY FROM LOGIC TO ALGORITHMS
2017 (CCC 2017)

Call for papers
Loria, 26-30 June 2017, Nancy, France
https://members.loria.fr/MHoyrup/CCC/home.html

* OVERVIEW. CCC is a workshop series bringing together researchers
from exact real number computation, computable analysis, effective
descriptive set theory, constructive analysis, and related
areas. The overall aim is to apply logical methods in these
disciplines to provide a sound foundation for obtaining exact and
provably correct algorithms for computations with real numbers and
related analytical data, which are of increasing importance in
safety critical applications and scientific computation. *

* SCOPE. The workshop specifically invites contributions in the areas
- Exact real number computation,
- Correctness of algorithms on infinite data,
- Computable analysis,
- Complexity of real numbers, real-valued functions, etc.
- Effective descriptive set theory
- Scott’s domain theory,
- Constructive analysis,
- Category-theoretic approaches to computation on infinite data,
- Weihrauch degrees,
- And related areas.

* INVITED SPEAKERS.
Matthew de Brecht (Kyoto, Japan)
Bernhard Reus (Brighton, UK)
Matthias Schroder (Darmstadt, Germany)
Alex Simpson (Ljubljana, Slovenia)

* IMPORTANT DATES
Deadline: 17 April 2017

* PROGRAMME COMMITTEE CHAIRS
Mathieu Hoyrup (Nancy) (co-chair)
Dieter Spreen (Siegen) (co-chair)

WORKSHOP ON METAFINITE MODEL THEORY AND DEFINABILITY AND COMPLEXITY OF
NUMERIC GRAPH PARAMETERS (METAFINITE 2017)

Affiliated with LICS 2017
June 19 2017, Reykjavik, Iceland
http://cs.technion.ac.il/~janos/metafinte2017

* AIM: The workshop will bring together three strands of investigation
dealing with the model theory and complexity of numeric graph
parameters and their generalization to other first order structures.
(A) Gurevich and Graedel in 1998 initiated the study of metafinite
model theory to study descriptive complexity of numeric parameters.
Metafinite model theory found most of its applications in databases
and abstract state machines (ASM), but was not widely studied in
connection to numeric combinatorial parameters.
(B) Courcelle, Makowsky and Rotics initiated a definability theory
for graph polynomials in 2000 and proved metatheorems for graph
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polynomials and numeric structural parameters.
(C) Kotek, Makowsky and Ravve questioned wether the Turing model of
computation was the right choice to discuss the complexity of
numeric graph parameters and proposed alternatives using the
Blum-Shub-Smale model of computation.
(D) Nesetril and Ossona de Mendez introduced key notions in the
theory of sparse graphs, such as graph families of bounded expansion
or polynomial expansion and the (surprisingly robust) nowhere dense
versus somewhere dense dichotomy. Their 2012 book ’Sparsity -
Graphs, Structures, and Algorithms’ combines model theory, analysis
and combinatorics and gives a comprehensive overview. Recently
Nesetril, along with Ossona de Mendez and Goodall, used finite model
theory, and particularly interpretation schemes, to provide a
general construction of polynomial graph invariants. This is an
alternative approach to graph invariants related to the framework
introduced by Makowsky and Zilber in 2005 and is best expressed in
the framework of Metafinite model theory.

* The aim of the workshop is to bring together researchers of these
four strands in order to further explore and elaborate on the
appropriate framework for the study of numeric structural parameters
and polynomials and to investigate further metatheorems.

* ORGANIZERS and PC:
A. Goodall (Charles University, Prague)
J.A. Makowsky (Technion, Haifa)
E.V. Ravve (ORT-Braude, Karmiel)

* KEYNOTE SPEAKERS: (* still to be confirmed)
Y. Gurevich (Microsoft, Redmond)
E. Graedel (RWTH, Aachen)
J. Nesetril (Charles University, Prague)

* CONFIRMED SPEAKERS:
K. Meer (BTU, Cottbus)
M. Ziegler (KAIST, Southkorea)
T. Kotek (TU, Vienna)
N. Labai (TU, Vienna)
A. Manuel (CMI, Chennai)
T. Colcombet (Paris VII, Paris)
J. Hubicka* (Charles University, Prague)
Introductory lecture will be given by the organizers.

* IMPORTANT DATES (AoE):
Submission: Friday 18 April 2017
Notification: Monday 1 May 2017
Final version: Monday 15 May 2017
Workshop: Monday June 19 2017

TWENTY-SECOND EUROPEAN SYMPOSIUM ON RESEARCH IN COMPUTER SECURITY
(ESORICS 2017)

Call for Papers
Oslo, Norway, September 11-15, 2017
https://www.ntnu.edu/web/esorics2017/

* OVERVIEW
ESORICS is the annual European research event in Computer Security.
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The Symposium started in 1990 and has been held in several European
countries, attracting a wide international audience from both the
academic and industrial communities. Papers offering novel research
contributions in computer security are solicited for submission to
the Symposium. The primary focus is on original, high quality,
unpublished research and implementation experiences. We encourage
submissions of papers discussing industrial research and
development.

* IMPORTANT DATES
Paper submission deadline: April 19, 2017
Notification to authors: June 16, 2016
Camera ready due: July 26, 2016

* WORKSHOP CHAIR
Sokratis Katsikas, Norwegian University of Science and Technology
(NTNU), Norway.

* PROGRAM COMMITTEE CHAIRS:
Dieter Gollman, Technische Universitat Hamburg-Harburg, Germany
Simon Foley, IMT Atlantique, France

42ND INTERNATIONAL SYMPOSIUM ON MATHEMATICAL FOUNDATIONS OF COMPUTER
SCIENCE (MFCS 2017)

Call for Papers
Aalborg, Denmark, August 21-25, 2017
http://mfcs2017.cs.aau.dk/

* BACKGROUND:
MFCS conference series is organized since 1972. MFCS is a
high-quality venue for original research in all branches of
theoretical computer science. The broad scope of the conference
encourages interactions between researchers who might not meet at
more specialized venues. MFCS 2017 consists of invited lectures and
contributed talks, selected by an international program committee of
researchers focusing on diverse areas of theoretical computer
science. The conference will be accompanied by workshops.

* We encourage submission of original research papers in all areas of
theoretical computer science, including (but not limited to) the
following (alphabetically ordered):
- algebraic and co-algebraic methods in computer science
- algorithms and data structures
- automata and formal languages
- bioinformatics
- combinatorics on words, trees, and other structures
- computational complexity (structural and model-related)
- computational geometry
- computer-assisted reasoning
- concurrency theory
- cryptography and security
- databases and knowledge-based systems
- formal specifications and program development
- foundations of computing
- logics in computer science
- mobile computing
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- models of computation
- networks (incl. wireless, sensor, ad-hoc networks)
- parallel and distributed computing
- quantum computing
- semantics and verification of programs
- theoretical issues in artificial intelligence
- types in computer science

* IMPORTANT DATES:
Abstract submission deadline: April 20th, 2017 (AoE)
Paper submission deadline: April 24th, 2017 (AoE)
Notification of authors: June 12th, 2017 (AoE)
Camera-ready copies due: June 22nd, 2017 (AoE)
Early registration deadline: June 23rd, 2017 (AoE)
Late registration deadline: August 7th, 2017 (AoE; afterward, only
on-site registration)

Conference dates: August 21 - 25, 2017
* PROGRAM CHAIRS:

Kim G. Larsen - PC chair (Aalborg University, Denmark)
Hans L. Bodlaender - co-chair (Eindhoven University of Technology,
Netherlands)

Jean-Francois Raskin - co-chair (Universite Libre de Bruxelles,
Belgium)

11TH INTERNATIONAL CONFERENCE ON VERIFICATION AND EVALUATION
OF COMPUTER AND COMMUNICATION SYSTEMS (VECoS 2017)

Call for Papers
August 24-25, 2017 Montreal, Canada
https://vecos.ensta-paristech.fr/2017/

* The VECoS conference series is interested in the analysis of
computer and communication systems in which functional and
extra-functional properties are inter-related. VECoS encourages the
cross-fertilization between the various formal verification and
evaluation approaches, methods and techniques, and especially those
developed for concurrent and distributed hardware/software systems.

* Topics of interest to the conference include, but are not limited to:
- Abstraction techniques
- Certification standards for real-time systems
- Compositional verification
- Correct-by-construction design
- Dependability assessment techniques
- Equivalence checking
- Model-checking
- Parameterized verification
- Performance and robustness evaluation
- Probabilistic verification
- QoS evaluation, planning and deployment
- RAMS (Reliability Availability Maintainability Safety) assessment
- Rigorous system design
- Security protocols verification
- Simulation techniques of discrete-event and hybrid systems
- Supervisory control
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- Verification & validation of IoT
- Verification & validation of safety-critical systems
- Worst-case execution time analysis

* IMPORTANT DATES
Abstract deadline: April 10, 2017
Papers deadline: April 24, 2017 (Anywhere on Earth)
Paper notification: May 29, 2017
Camera-ready deadline: June 12, 2017
Conference: August 24-25, 2017

* INVITED SPEAKERS
Mourad Debbabi, Concordia University, Montreal, Canada
Michel Dagenais, Polytechnique Montreal, Canada
Mengchu Zhou, NJIT, Newark, NJ, USA

* PROGRAM CHAIRS
Kamel Barkaoui, CNAM, Paris, France
Hanifa Boucheneb, Polytechnique Montreal, Canada

26th INTERNATIONAL CONFERENCE ON AUTOMATED REASONING WITH
ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2017)

Call for Papers
Brasilia, Brazil - 25-29 September 2017
Co-located with FroCoS 2017 and ITP 2017.
http://tableaux2017.cic.unb.br

* TABLEAUX is the main international conference at which research
on all aspects, theoretical foundations, implementation techniques,
systems development and applications, of the mechanization of
tableau-based reasoning and related methods is presented.

* Tableau methods offer a convenient and flexible set of tools for
automated reasoning in classical logic, extensions of classical
logic, and a large number of non-classical logics. For large groups
of logics, tableau methods can be generated automatically. Areas
of application include verification of software and computer
systems, deductive databases, knowledge representation and its
required inference engines, teaching, and system diagnosis.

* PROGRAM CHAIRS
Claudia Nalon, University of Brasilia, Brazil
Renate Schmidt, The University of Manchester, UK

* IMPORTANT DATES
Abstract deadline: April 18, 2017
Submission deadline: April 25, 2017
Notifications: June 8, 2017
Camera-Ready deadline: July 3, 2017.

* AWARDS
The TABLEAUX 2017 Best Paper Award will be presented to the best
submission nominated and chosen by the Program Committee among
the accepted papers.

11th INTERNATIONAL SYMPOSIUM ON FRONTIERS OF COMBINING
SYSTEMS (FroCoS 2017)

Call for Papers

ACM SIGLOG News 113 April 2017, Vol. 4, No. 2



Brasilia, Brazil - 25-29 September 2017
Co-located with TABLEAUX 2017 and ITP 2017
http://frocos2017.cic.unb.br

* The main goal of the symposium is to disseminate and promote
progress in research areas related to the development of techniques
for the integration, combination, and modularization of formal
systems together with their analysis.

* SCOPE OF CONFERENCE. In various areas of computer science, such as
logic, computation, program development and verification, artificial
intelligence, knowledge representation, and automated reasoning,
there is an obvious need for using specialized formalisms and
inference systems for selected tasks. To be usable in practice,
these specialized systems must be combined with each other and
integrated into general purpose systems. This has led---in many
research areas---to the development of techniques and methods for
the combination and integration of dedicated formal systems, as well
as for their modularization and analysis.

* INVITED SPEAKERS
Katalin Bimbe (University of Alberta, Canada) (joint with TABLEAUX

and ITP)
Jasmin Blanchette (Inria and LORIA, Nancy, France) (joint with

TABLEAUX and ITP)
Cezary Kaliszyk (University of Innsbruck, Austria) (joint with

TABLEAUX and ITP)
Cesare Tinelli (University of Iowa, USA)
Renata Wassermann (University of Sao Paulo, Brazil)

* PROGRAM COMMITTEE CHAIRS
Clare Dixon, University of Liverpool, UK
Marcelo Finger, Universidade de Sao Paulo, Brazil

* ORGANISATION
University of Brasilia
Federal University of Rio Grande do Norte

* WORKSHOPS AND TUTORIALS
Proposals for Workshops and Tutorial sessions have been solicited
in a separate call, which can be found at
http://frocos2017.cic.unb.br/#cfw.
There are co-located events, described at
http://frocos2017.cic.unb.br/#colocated .

* IMPORTANT DATES
Abstract deadline: April 24, 2017
Submission deadline: April 28, 2017
Notifications: June 9, 2017
Camera-Ready deadline: June 23, 2017.

THE 17TH INTERNATIONAL CONFERENCE ON RUNTIME VERIFICATION (RV 2017)
Call for Papers and Tutorials
September 13-16, Seattle, WA, USA
http://rv2017.cs.manchester.ac.uk
rv2017@easychair.org

* Runtime verification is concerned with the monitoring and analysis
of the runtime behaviour of software and hardware systems. Runtime
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verification techniques are crucial for system correctness,
reliability, and robustness; they provide an additional level of
rigor and effectiveness compared to conventional testing, and are
generally more practical than exhaustive formal
verification. Runtime verification can be used prior to deployment,
for testing, verification, and debugging purposes, and after
deployment for ensuring reliability, safety, and security and for
providing fault containment and recovery as well as online system
repair.

* Topics of interest to the conference include, but are not limited to:
- specification languages
- monitor construction techniques
- program instrumentation
- logging, recording, and replay
- combination of static and dynamic analysis
- specification mining and machine learning over runtime traces
- monitoring techniques for concurrent and distributed systems
- runtime checking of privacy and security policies
- statistical model checking
- metrics and statistical information gathering
- program/system execution visualization
- fault localization, containment, recovery and repair
- integrated vehicle health management (IVHM)
- Application areas of runtime verification include cyber-physical
- systems, safety/mission-critical systems, enterprise and systems
- software, autonomous and reactive control systems, health management
- and diagnosis systems, and system security and privacy.

* We welcome contributions exploring the combination of runtime
verification techniques with machine learning and static analysis.
Whilst these are highlight topics, papers falling into these
categories will not be treated differently from other contributions.

* IMPORTANT DATES.
Abstract deadline: April 24, 2017 (Anywhere on Earth)
Paper and tutorial deadline: May 1, 2017 (Anywhere on Earth)
Tutorial notification: May 21, 2017
Paper notification: June 26, 2017
Camera-ready deadline: July 24, 2017
Conference: September 13-16, 2017

* INVITED SPEAKERS
Rodrigo Fonseca, Brown University, USA
Vlad Levin and Jakob Lichtenberg, Microsoft Research, USA
Andreas Zeller, Saarland University, Germany

* PROGRAM CHAIRS
Shuvendu Lahiri, Microsoft Research, USA
Giles Reger, University of Manchester, UK

UNVEILING DYNAMICS AND COMPLEXITY - 13TH COMPUTABILITY IN
EUROPE CONFERENCE (CIE 2017)

Call for Informal Presentations
Turku, Finland, June 12-16, 2017
http://math.utu.fi/cie2017
Submission deadline: May 1, 2017
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* OVERVIEW: Continuing the tradition of past CiE conferences, in
addition to the formal presentations based on the LNCS proceedings
volume, we invite researchers to present informal presentations,
that are prepared shortly before the conference and inform the
participants about current research and work in progress (in the
style of mathematics conferences).

* IMPORTANT DATES
Submission deadline: May 1, 2017
Notification of acceptance: Within two weeks of submission

* Please send us a brief description of your talk (one page) by the
submission deadline May 1st.

CALCO Early Ideas 2017 WORKSHOP (CALCO EI 2017)
Call for Contributions
A satellite event of CALCO 2017
June 13-16, 2017
http://coalg.org/mfps-calco2017/cfp-early-ideas-workshop.html
Submission of short contributions: May 1, 2017

* SCOPE. The programme of CALCO 2017 will include special sessions
reserved for the CALCO Early Ideas Workshop, featuring presentations
of work in progress and original research proposals. PhD students
and young researchers are particularly encouraged to
contribute. Attendance at the workshop is open to all conference
participants. The CALCO Early Ideas Workshop invites submissions on
the same topics as the CALCO conference: reporting results of
theoretical work, the way these results can support methods and
techniques for software development, as well as experience with the
transfer of the resulting technologies into industrial practice.

* IMPORTANT DATES
Submission of short contributions: May 1, 2017
Author notification: May 19, 2017
Final version: May 31, 2017

* PC CHAIR
Daniela Petrisan - Universite Paris 7, France

LOGIC COLLOQUIUM 2017 (LC 2017)
First Announcement and Call for Submissions
August 14-20, 2017, Stockholm, Sweden
https://www.lc17.conf.kth.se

* The Logic Colloquium 2017 (LC2017) is the 2017 Annual European
summer meeting of the Association for Symbolic Logic (ASL) and will
be held during August 14-20, 2017 at the main campus of Stockholm
University. The Logic Colloquium 2017 is organised and hosted
jointly by the Departments of Mathematics and Philosophy at
Stockholm University, and is also supported by the KTH Royal
Institute of Technology.

* LC2017 will be co-located with two other logic-related events, all
taking place at Stockholm University:
- the 3rd Nordic Logic Summer School, NLS2017, August 7-12
- the 26th EACSL Annual Conference on Computer Science Logic,
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CSL2017, August 20-24.
* There will be a joint session of CSL2017 and LC2017 in the morning

of August 20. Further information about all events can be found at:
https://www.lis17.conf.kth.se

* The programme of LC2017 will also include special sessions, which
will be announced later.

* INVITED SPEAKERS
* Plenary speakers:

- David Aspero (University of East Anglia)
- Alessandro Berarducci (Pisa)
- Elisabeth Bouscaren (Paris 11)
- Christina Brech (Sao Paolo)
- Sakae Fuchino (Kobe University)
- Denis Hirschfeldt (University of Chicago)
- Wilfrid Hodges (British Academy)
- Emil Jerabek (Prague)
- Per Martin-LÃűf (Stockholm University)
- Dag Prawitz (Stockholm University)
- Sonja Smets (University of Amsterdam)

* Tutorial speakers:
- Patricia Bouyer-Decitre (LSV ENS Cachan)
- Mai Gehrke (Paris 7)

* LC2017 invited highlight speakers for the joint LC-CSL session:
- Veronica Becher (Buenos Aires)
- Pierre Simon (UC Berkeley)

* IMPORTANT DATES
Abstract submission for contributed talks: May 5, 2017
Notification: TBA

* PC CHAIR
Mirna Dzamonja (PC chair, University of East Anglia)

* CONTACTS AND ENQUIRIES
For enquiries on scientific and programme issues, send email to:
Mirna Dzamonja (M.Dzamonja@uea.ac.uk) For enquiries on organising
matters, send email to: lc2017 at philosophy.su.se

2ND INTERNATIONAL WORKSHOP ON AI ASPECTS OF REASONING, INFORMATION,
AND MEMORY 2017 (AIRIM’17)

Call for Papers
Prague, Czech Republic, 3 - 6 September, 2017
https://www.fedcsis.org/2017/airim

* SCOPE:
There is general realization that computational models of languages
and reasoning can be improved by integration of heterogeneous
resources of information, e.g., multidimensional diagrams, images,
language, syntax, semantics, quantitative data, memory. While the
event targets promotion of integrated computational approaches, we
invite contributions from any individual areas related to
information, language, memory, reasoning.

* IMPORTANT DATES
Paper submission (strict deadline): May 10 2017 23:59:59 pm HST
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Position paper submission: May 31, 2017
Authors notification: June 14, 2017
Final paper submission and registration: June 28, 2017
Final deadline for discounted fee: August 01, 2017
Conference dates: September 3-6, 2017

* ORGANIZERS
Roussanka Loukanova, Stockholm University, Sweden
M. Dolores Jimenez-Lopez, Universitat Rovira i Virgili, Spain
Henning Christiansen, Roskilde University, Denmark

* CONTACT INFORMATION
M. Dolores Jimenez-Lopez (mariadolores.jimenez@urv.cat)
Roussanka Loukanova (rloukanova@gmail.com)

24th INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING
(TIME 2017)

Call for Papers
Mons (Belgium), 16-18 October 2017
http://informatique.umons.ac.be/time2017/

* TIME 2017 aims to bring together researchers interested in reasoning
about temporal aspects of information in any area of Computer
Science. The symposium, currently in its 24th edition, has a wide
remit and intends to cater to both theoretical aspects and
well-founded applications. One of the key aspects of the symposium is
its interdisciplinarity, with attendees from distinct areas such as
artificial intelligence, database management, logic and verification,
and beyond. The symposium will encompass three tracks on temporal
representation and reasoning in (1) Artificial Intelligence, (2)
Databases and (3) Logic and Verification. Submissions of high-quality
papers describing research results are solicited. See the webpage
for a detailed list of topics of interest.

* PROGRAM COMMITTEE CHAIRS: Sven Schewe (University of Liverpool);
Thomas Schneider (University of Bremen); Jef Wijsen (University of
Mons)

* INVITED SPEAKERS:
Alessandro Artale (Free University of Bozen-Bolzano);
Javier Esparza (Technical University of Munich);
Sheila McIlraith (University of Toronto)

* Authors of selected papers will be invited to submit an extended
version of their contribution to a special issue of the journal
Theoretical Computer Science.

* IMPORTANT DATES:
Abstracts due: May 8, 2017;
Full papers due: May 12, 2017;
Notification: June 27, 2017;
Final version due: July 14, 2017;
Symposium: October 16-18, 2017

SYGUS-COMP 2017 4TH ANNUAL SYNTAX GUIDED SYNTHESIS COMPETITION
(SyGuS-COMP 2017)

Call for Solvers and Benchmarks Submission
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July 22, 2017 Heidelberg, Germany (with CAV and SYNT)
http://www.sygus.org/SyGuS-COMP2017.html

* The SyGuS Competition is an annual competition for solvers of the
syntax-guided synthesis problem. This problem asks to find a program
meeting a given logical formulae augmented with a grammar
restricting the set of allowed implementations. These are formulated
in SyGuS-IF, a logical formalism built on top of SMT-LIB.

* Benchmarks and Solvers submission is now open.
* IMPORTANT DATES:

Benchmark submission deadline: 15 May 2017
Deadline for first version of solvers: 7 June 2017

* Detailed information can be found on the webpage.

THIRD NORDIC LOGIC SUMMER SCHOOL (NLS 2017)
Second announcement and call for papers
Stockholm, August 7 - 11, 2017
Department of Mathematics, KrÃd’ftriket Campus, Stockholm University.
https://www.sls17.conf.kth.se

* The third Nordic Logic Summer School is arranged under the auspices
of the Scandinavian Logic Society
(http://scandinavianlogic.org/). The two previous schools were
organized in Nordfjordeid, Norway (2013) and Helsinki (2015). The
intended audience is advanced master students, PhD-students,
postdocs and experienced researchers wishing to learn the state of
the art in a particular subject. The school is co-located with Logic
Colloquium 2017 (August 14-20) and Computer Science Logic 2017
(August 21-24).

* The school will consist of 10 five-hour courses, running in two
qparallel streams. In addition, there will be short student
presentations and poster sessions.

* The lectures start on:
Monday August 7, 9:00, and end Friday August 11, 16:15

* LECTURERS AND COURSES
The following lecturers and course topics are confirmed.
- Mirna Dzamonja (University of East Anglia)
Set Theory
- Martin Escardo (Birmingham)
Topological and Constructive Aspects of Higher-Order Computation
- Henrik Forssell (Oslo)
Categorical Logic
- Volker Halbach (Oxford)
Truth & Paradox
- Larry Moss (Indiana University, Bloomington)
Natural Logic
- Anca Muscholl (LaBRI, UniversitÃl’ Bordeaux)
Logic in Computer Science - Control and Synthesis, from a
Distributed Perspective
- Eric Pacuit (University of Maryland)
Logic and Rationality
- Peter Pagin and Dag WesterstÃěhl (Stockholm University)
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Compositionality
- Sara L. Uckelman (Durham)
Medieval Logic
- Andreas Weiermann (Ghent)
Proof Theory

* IMPORTANT DATES
Registration:
Registration opens: March 6, 2017
Early registration ends: May 15, 2017
Late registration ends: August 4, 2017
Submission of abstracts for presentations and posters:
Opening: March 6, 2017
Closing: May 2, 2017
Notification of acceptance: May 9, 2017

* FURTHER INFORMATION
Further information about submissions, registration and accommodation
possibilities will (in due time) be available on the NLS webpage:
General enquiries: nls2017 [at] philosophy.su.se
Accommodation enquiries: logic2017-accommodation [at] math.su.se

* PROGRAM CHAIR
Erik Palmgren (chair, Stockholm U)

5TH INTERNATIONAL WORKSHOP ON STRATEGIC REASONING (SR 2017)
Preliminary Call for Papers
Liverpool, UK, July 26-27, 2017
http://sr2017.csc.liv.ac.uk/

* OVERVIEW: Strategic reasoning is one of the most active research
areas in the multi-agent system domain. The literature in this field
is extensive and provides a plethora of logics for modelling
strategic ability. Theoretical results are now being used in many
exciting domains, including software tools for information system
security, robot teams with sophisticated adaptive strategies, and
automatic players capable of beating expert human adversaries, just
to cite a few. All these examples share the challenge of developing
novel theories and tools for agent-based reasoning that take into
account the likely behaviour of adversaries. The international
workshop on strategic reasoning aims to bring together researchers
working on different aspects of strategic reasoning in computer
science, both from a theoretical and a practical point of view. SR
2017 will be co-located with TARK 2017, which will be held in
Liverpool on July 24-26, 2017.

* LIST OF TOPICS
The topics covered by the workshop include, but are not limited to,
the following:
Logics for reasoning about strategic abilities;
Logics for multi-agent mechanism design, verification, and synthesis;
Logical foundations of decision theory for multi-agent systems;
Strategic reasoning in formal verification;
Automata theory for strategy synthesis;
Strategic reasoning under perfect and imperfect information;
Applications and tools for cooperative and adversarial reasoning;
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Robust planning and optimisation in multi-agent systems;
Risk and uncertainty in multi-agent systems;
Quantitative aspects in strategic reasonings.

* IMPORTANT DATES
Abstract deadline: May 8, 2017
Submission deadline: May 15, 2017
Acceptance notification: June 16, 2017
Camera-ready deadline: June 30, 2017
Workshop: July 26-27, 2017

* WORKSHOP CO-CHAIRS
Wiebe van der Hoek, University of Liverpool
Bastien Maubert, University of Naples "Federico II"
Aniello Murano, University of Naples "Federico II"
Sasha Rubin, University of Naples "Federico II"

4TH INTERNATIONAL CONFERENCE ON HISTORY AND PHILOSOPHY OF COMPUTING
(HaPoC4 2017)

Second Call for Papers
4-7 October 2017, Masaryk University Brno
https://hapoc2017.sciencesconf.org/

* HaPoC4 2017 will be held under the auspices of the DHST/DLMPS
Commission for the History and Philosophy of Computing (HaPoC)
www.hapoc.org

* OVERVIEW. HaPoC conferences aim to bring together researchers
exploring the various aspects of the computer from historical or
philosophical standpoint. The series aims at an interdisciplinary
focus on computing, rooted in historical and philosophical
viewpoints. The conference brings together researchers interested in
the historical developments of computing, as well as those
reflecting on the sociological and philosophical issues springing
from the rise and ubiquity of computing machines in the contemporary
landscape. For HaPoC 2017 we welcome contributions from logicians,
philosophers and historians of computing as well as from
philosophically aware computer scientists and mathematicians. We
also invite contributions on the use of computers in art. As HaPoC
conferences aim to provide a platform for interdisciplinary
discussions among researchers, contributions stimulating such
discussions are preferable.

* IMPORTANT DATES
Deadline for abstracts and extended abstracts: 15 May 2017
Notifications of acceptance: July 2016

19TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE
PROGRAMMING (PPDP 2017)

Call for Papers
Namur, Belgium, October 9-11, 2017
(co-located with LOPSTR’17)
http://complogic.cs.mcgill.ca/ppdp2017

* PPDP 2017 is a forum that brings together researchers from the
declarative programming communities, including those working in the
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functional, logic, answer-set, and constraint programming
paradigms. The goal is to stimulate research in the use of logical
formalisms and methods for analyzing, performing, specifying, and
reasoning about computations, including mechanisms for concurrency,
security, static analysis, and verification.

* This year the conference will be co-located with the 27th Int’l
Symp. on Logic-Based Program Synthesis and Transformation (LOPSTR
2017).

* Submissions are invited on all topics from principles to practice,
from foundations to applications. Topics of interest include, but
are not limited to
- Language Design: domain-specific languages; interoperability;
concurrency, parallelism, and distribution; modules; probabilistic
languages; reactive languages; database languages; knowledge
representation languages; languages with objects; language
extensions for tabulation; metaprogramming. -- Implementations:
abstract machines; interpreters; compilation; compile-time and
run-time optimization; garbage collection; memory management.

- Foundations: type systems; type classes; dependent types; logical
frameworks; monads; resource analysis; cost models; continuations;
control; state; effects; semantics.

- Analysis and Transformation: partial evaluation; abstract
interpretation; control flow; data flow; information flow;
termination analysis; resource analysis; type inference and type
checking; verification; validation; debugging; testing.

- Tools and Applications: programming and proof environments;
verification tools; case studies in proof assistants or
interactive theorem provers; certification; novel applications of
declarative programming inside and outside of CS; declarative
programming pearls; practical experience reports and industrial
application; education.

* IMPORTANT DATES:
Abstract Submission: 12 May 2017
Paper Submission: 19 May 2017
Paper Rebuttal: 10 July 2017
Notification: 20 July 2017
Final Version: 15 Aug 2017

* SUBMISSION CATEGORIES:
Submissions can be made in three categories: regular Research Papers,
System Descriptions, and Experience Reports.

* PROGRAM COMMITTEE CHAIR
Brigitte Pientka (McGill University)

THE EIGHTH INTERNATIONAL SYMPOSIUM ON GAMES, AUTOMATA, LOGICS, AND
FORMAL VERIFICATION (GandALF 2017)

Rome, Italy, 20-22 September 2017
http://gandalf2017.istc.cnr.it

* AIM.
The aim of GandALF 2017 symposium is to bring together
researchers from academia and industry which are actively working in
the fields of Games, Automata, Logics, and Formal Verification. The
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idea is to cover an ample spectrum of themes, ranging from theory to
applications, and stimulate cross-fertilization.

* TOPICS
Papers focused on formal methods are especially welcome. Authors are
invited to submit original research or tool papers on all relevant
topics in these areas. Papers discussing new ideas that are at an
early stage of development are also welcome. The topics covered by
the conference include, but are not limited to, the following:
- Automata Theory
- Automated Deduction
- Computational aspects of Game Theory
- Concurrency and Distributed computation
- Decision Procedures
- Deductive, Compositional, and Abstraction Techniques for

Verification
- Finite Model Theory
- First-order and Higher-order Logics
- Formal Languages
- Formal Methods for Systems Biology, Hybrid, Embedded, and Mobile

Systems
- Games and Automata for Verification
- Game Semantics
- Logical aspects of Computational Complexity
- Logics of Programs
- Modal and Temporal Logics
- Model Checking
- Models of Reactive and Real-Time Systems
- Program Analysis and Software Verification
- Run-time Verification and Testing
- Specification and Verification of Finite and Infinite-state

Systems
- Synthesis

* IMPORTANT DATES
Abstract submission: May 19, 2017
Paper submission: May 26, 2017
Notification: July 7, 2017
Camera-ready: July 31, 2017
Conference: Sept. 20-22, 2017

* PROGRAM CHAIRS
Patricia Bouyer-Decitre LSV, CNRS & ENS de Cachan, France
Pierluigi San Pietro, Politecnico di Milano, Italy

7TH INTERNATIONAL CHALLENGE ON THE RIGOROUS EXAMINATION OF REACTIVE
SYSTEMS (RERS 2017)

Call for Papers
Santa Barbara, USA, July 2017.
co-located with ISSTA/SPIN 2017.

* RERS is designed to encourage software developers and researchers to
apply and combine their tools and approaches in a free style manner
to answer evaluation questions for reachability and LTL formulas on
specifically designed benchmarks. The goal of this challenge is to
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provide a basis for the comparison of verification techniques and
available tools. The benchmarks are automatically synthesized to
exhibit chosen properties and then enhanced to include dedicated
dimensions of difficulty, ranging from conceptual complexity of the
properties (e.g. reachability, full safety, liveness), over size of
the reactive systems (a few hundred lines to tens of thousands of
them), to exploited language features (arrays and index
arithmetics). They are therefore especially suited for
community-overlapping tool comparisons. What distinguishes RERS
from other challenges is that the challenge problems can be
approached in a free-style manner: it is highly encouraged to
combine and exploit all known (even unusual) approaches to software
verification. In particular, participants are not constrained to
their own tools. To clearly separate RERS from other challenges,
this year the LTL analysis is separated from the reachability of
labels. RERS is then the only challenge with a special track for LTL
analysis on synthesized benchmarks.

* The main aims of RERS 2017 are to : - encourage the combination of
usually different research fields for better software verification
results; - provide a comparison foundation based on differently
tailored benchmarks that reveals the strengths and weaknesses of
specific approaches; - initiate a discussion for better benchmark
generation reaching out across the usual community barriers to
provide benchmarks useful for testing and comparing a wide variety
of tools.

* There will be a 1 day workshop where the results will be presented,
the generation methodology will be explained, and the modalities for
the RERS 2018 challenge, which will be part of ISoLA 2018 will be
discussed. There is still a lot of time to get engaged, and
collecting RERS achievements is a lot of fun!

* SCHEDULE:
* SEQUENTIAL PROBLEMS

The sequential challenge just started. Its entire setup in online
since a few days. Thus you can start right away. At least if you are
a RERS newcomer, we would strongly recommend you to start with the
training problems:
(http://www.rers-challenge.org/2017/index.php?page=trainingphase)
They are an ideal starting point for the challenge: They are smaller
in size than the challenge problems but otherwise structurally
equivalent. Moreover, an automatic checker (available on the same
page) allows you to evaluate your own solutions. After having
tackled the training problems it should be easy to move on to attack
the challenge problems.

* PARALLEL PROBLEMS: 01.03.2017:
The training problems for the parallel challenge wil be online
01.05.2017: The setup for the parallel challlenge will be online.

* DEADLINE for all submission: 01.07.2017
Please note that we want to specifically encourage also solutions
from participants that work with tools developed by others.

* FURTHER INFORMATION
More detailed information on the challenge can be found in the
participants section of www.rers-challenge.org/2017. Looking forward
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to seeing you in Santa Barbara! Best regards Bernhard, Falk, Jaco,
and Markus

INTERNATIONAL CONFERENCE ON RELIABILITY, SAFETY AND SECURITY OF
RAILWAY SYSTEMS: MODELLING, ANALYSIS, VERIFICATION AND CERTIFICATION -
(RSSRAIL 2017)

Call for Papers
November 14-16, 2017, Pistoia, Italy
https://conferences.ncl.ac.uk/rssrail/

* AIMS.
The railway industry is facing an increasing pressure to improve
system safety, to decrease the production cost and time to market,
to reduce the carbon emission and running cost, and to improve the
system capacity. Railway systems are now being integrated into
larger multi-transport networks. Such systems require an even higher
degree of automation at all levels of operation. These trends
dramatically increase the complexity of railway applications and
pose new challenges in developing novel methods of modelling,
analysis, verification and validation to ensure their reliability,
safety and security, as well as in supporting novel mechanisms and
procedures to help argue that the development processes are meeting
the standards. Following the success of RSSRail 2016 held in Paris
on June 28-30, 2016, this conference will contribute to a range of
key objectives. There is a pressing demand to bring together
researchers and developers working on railway system reliability,
security and safety to discuss how these requirements can be met in
an integrated way.

* The conference aims to bring together researchers and engineers
interested in building critical railway applications and
systems. This will be a working conference in which research
advances will be discussed and evaluated by both researchers and
engineers focusing on their potential to be deployed in industrial
settings.

* We are interested in the submissions of three types:
- Research papers
- Industrial experience reports
- PhD student papers.

* IMPORTANT DATES:
Abstract submission: June 1, 2017
Paper submission deadline: June 8, 2017
Notification: July 8, 2017
camera-read papers submitted: August 18, 2017

* CONFERENCE CHAIRS:
Alessandro Fantechi, University of Firenze, Italy
Thierry Lecomte, ClearSy, France
Alexander Romanovsky, Newcastle University, UK

12TH WORKSHOP ON LOGICAL AND SEMANTIC FRAMEWORKS, WITH APPLICATIONS
(LSFA 2017)

Second Call for Papers
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23-24 September 2017, Brasilia, Brazil
Satellite event of TABLEAUX, FroCoS, and ITP 2017
http://lsfa2017.cic.unb.br/

* OVERVIEW
Logical and semantic frameworks are formal languages used to
represent logics, languages and systems. These frameworks provide
foundations for the formal specification of systems and programming
languages, supporting tool development and reasoning.
LSFA 2017 aims to be a forum for presenting and discussing work in
progress, and therefore to provide feedback to authors on their
preliminary research. The proceedings are produced after the
meeting, so that authors can incorporate this feedback in the
published papers.

* TOPICS OF INTEREST
Topics of interest to this forum include, but are not limited to:
- Automated deduction
- Applications of logical and/or semantic frameworks
- Computational and logical properties of semantic frameworks
- Formal semantics of languages and systems
- Implementation of logical and/or semantic frameworks
- Lambda and combinatory calculi
- Logical aspects of computational complexity
- Logical frameworks
- Process calculi
- Proof theory
- Semantic frameworks
- Specification languages and meta -languages
- Type theory

* IMPORTANT DATES
Submission: 21 June 2017
Notification: 21 July 2017
Final pre-proceedings version due: 11 August 2017
LSFA 2017 23-24 September 2017

* PROGRAMME COMMITTEE CHAIRS
Sandra Alves, University of Porto - co-chair
Renata Wassermann, University of Sao Paulo - co-chair

ENCYCLOPEDIA OF PROOF SYSTEMS - POSTER SESSION & TASK-FORCE (EPS 2017)
Call for Posters and Encyclopedia Entries
24, 25th of September 2017, Brasilia, Brazil
http://proofsystem.github.io/Encyclopedia/

* DESCRIPTION. The Encyclopedia of Proof Systems was created in 2014
with the goal of being a quick reference for the various proof
systems used by logicians. Since then, it has collected 64 entries
on the most various logics and calculi. This was only possible due
to the collaboration of many members of the logic community. This
event aims to promote the encyclopedia and attract more
contributions and collaborators. It consists of:
- a poster session in the afternoon of September 24th, 2017, during
which submitted entries will be displayed as posters;

- an interactive hands-on meeting in the morning of September 25th,
2017, for those who would like to contribute to the continuous
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improvement of the encyclopedia.
* Submissions and instructions are available in the website:

http://proofsystem.github.io/Encyclopedia/
* IMPORTANT DATES

Submission: 1 August 2017
Notification: 15 August 2017
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